ISG Talks are sponsored by Couchbase.

<< All Talks

Yannis Papakonstantinou (Google): Vector Search and Databases

DBH 6011

Yannis Papakonstantinou Distinguished Engineer, Query Processing and GenAI at Google Cloud Databases Abstract: Semantic search ability, via embedding (vectors) and vector indexing, has been added to Google Cloud Platform (GCP) […]

Michael Jungmair (TU Munich): A Compiler-Centric Query Engine Design for Mixed Workloads and Modern Hardware

DBH 3011

A Compiler-Centric Query Engine Design for Mixed Workloads and Modern Hardware 11/1/2024, 1:00 PM 2 PM, DBH 3011 Michael Jungmair, Technical University of Munich, Germany Abstract: Relational query engines are increasingly expected to handle more than just relational queries and also run on modern hardware that is increasingly parallel and distributed. However, it is not clear how existing system designs can deal with these two challenges effectively. We propose a holistic, compiler-centric design for data processing systems that is designed for tightly integrated optimization and execution of relational queries, non-relational workloads and user-defined functions on modern hardware. Bio: Michael Jungmair is a third year PhD student at the Technical University of Munich. Supervised by Jana Giceva, he is performing research in the intersection of database engines and compiler technology. So far, this research culminated in the design and implementation of LingoDB (lingo-db.com), a novel query engine based on the MLIR compiler framework

Sainyam Galhotra (Cornell): Context-aware Responsible Data Science

DBH 6011

Abstract: Data-based systems are increasingly used in applications that have far-reaching consequences and long-lasting societal impact. However, the development process remains highly specialized, tedious, and unscalable. This produces a manually […]

Sainyam Galhotra (Cornell): Context-aware Responsible Data Science

DBH 3011

ABSTRACT Data-based systems are increasingly used in applications that have far-reaching consequences and long-lasting societal impact. However, the development process remains highly specialized, tedious, and unscalable. This produces a manually […]

Jiawei Han (distinguished lecture): A Retrieval-and-Structuring Approach for LLM-Enhanced, Theme-Focused Scientific Exploration

DBH 6011

“A Retrieval-and-Structuring Approach for LLM-Enhanced, Theme-Focused Scientific Exploration” Abstract:  Large Language Models (LLMs) may bring unprecedented power for scientific exploration.  However, current LLMs may still encounter major challenges for effective scientific exploration due to their lack of in-depth, theme-focused data and knowledge.  Retrieval augmented generation (RAG) has recently become an interesting approach for augmenting LLMs with grounded, theme-specific datasets.  We discuss the challenges of RAG and propose a retrieval and structuring (RAS) approach, which enhances RAG by improving retrieval quality and mining structures (e.g., extracting entities and relations and building knowledge graphs) to ensure its effective integration of theme-specific data with LLM.  We show the promise of this approach at augmenting LLMs and discuss its potential power for LLM-enabled science exploration.  Bio: Jiawei Han is Michael Aiken Chair Professor in the Siebel School of Computing and Data Science, University of Illinois Urbana-Champaign.  He received ACM SIGKDD Innovation Award (2004), IEEE Computer Society Technical Achievement Award (2005), IEEE Computer Society W. Wallace McDowell Award (2009), Japan's Funai Achievement Award (2018), and being elevated to Fellow of Royal Society of Canada (2022).  He is Fellow of ACM and Fellow of IEEE and served as the Director of Information Network Academic Research Center (INARC) (2009-2016) supported by the Network Science-Collaborative Technology Alliance (NS-CTA) program of U.S. Army Research Lab and co-Director of KnowEnG, a Center of Excellence in Big Data Computing (2014-2019), funded by NIH Big Data to Knowledge (BD2K) Initiative.  Currently, he is serving on the executive committees of two NSF funded research centers:  MMLI (Molecular Make Research Institute)—one of NSF funded national AI centers since 2020 and I-Guide—The National Science Foundation (NSF) Institute for Geospatial Understanding through an Integrative Discovery Environment (I-GUIDE) since 2021.