ISG Talks are sponsored by Couchbase.
- This event has passed.
Tim Kraska (MIT): Towards instance-optimized data systems
April 22, 2022 @ 11:00 am - 12:00 pm
Location:
DBH 6011
https://uci.zoom.us/j/94559511434 (for UCI users only)
Speaker: Tim Kraska, MIT
Abstract: Recently, there has been a lot of excitement around ML-enhanced (or learned) algorithms and data structures. For example, there has been work on applying machine learning to improve query optimization, indexing, storage layouts, scheduling, log-structured merge trees, sorting, compression, sketches, among many other data management tasks. Arguably, the ideas behind these techniques are similar: machine learning is used to model the data and/or workload in order to derive a more efficient algorithm or data structure. Ultimately, what these techniques will allow us to build are “instance-optimized” systems; systems that self-adjust to a given workload and data distribution to provide unprecedented performance and avoid the need for tuning by an administrator.
In this talk, I will first provide an overview of the opportunities and limitations of current ML-enhanced algorithms and data structures, present initial results of SageDB, a first instance-optimized system we are building as part of DSAIL@CSAIL at MIT, and finally outline remaining challenges and future directions.
Tim Kraska is an Associate Professor of Electrical Engineering and Computer Science in MIT’s Computer Science and Artificial Intelligence Laboratory, co-director of the Data System and AI Lab at MIT (DSAIL@CSAIL), and co-founder of Einblick Analytics. Currently, his research focuses on building systems for machine learning, and using machine learning for systems. Before joining MIT, Tim was an Assistant Professor at Brown, spent time at Google Brain, and was a PostDoc in the AMPLab at UC Berkeley after he got his PhD from ETH Zurich. Tim is a 2017 Alfred P. Sloan Research Fellow in computer science and received several awards including the VLDB Early Career Research Contribution Award, the VMware Systems Research Award, the university-wide Early Career Research Achievement Award at Brown University, an NSF CAREER Award, as well as several best paper and demo awards at VLDB, SIGMOD, and ICDE.