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Challenges Computation in the Eyes of a
Domain Scientist

e Domain applications are extremely complex oy

e Many domain scientists face significant
barriers incorporating distributed
computation and Al to their research.

e The variety of platforms, models, and
processes generates unrealistic
expectations.

e Good choices are a combination of formal
training and tacit expertise.

e Wrong choices - slow jobs, wasted
compute, unhappy users.

e Tacit expertise comes from years of
experience and lots of trial and error.
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Workflows
Background



What are Workflows?

e Workflows are a collection of atomic tasks

connect by some type of dependency

e They are used to describe events that Scrub Empty
dishes dishwasher

need to respect a sequence.
e Simple example: Dishwashing

o Scrape the food out of dishes
Fill the sink with hot soapy water
Scrub the dishes

Empty dishwasher
Rinse %@T
Load dishwasher I T -

[ ) Load/Run
dishwasher

O O O O O




What are Workflows?
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Workflows Manufacturing Workflows Workflows
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Workflows



What are Scientific Workflows?
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Scientific
Workflows
start been
used to
describe
complex
applications

The experiment
responsible for the
imaging the first
picture of a black
hole

They become
attractive
research topic
in several
areas

Scheduling
WMS
HPC System Design
ML Workflows

As applications/
technology
evolve, they

become more
computationally
demanding

Engineered to
handle very large
datasets,
comprising millions
of tasks that range
from milliseconds
to several hours in
execution time

Not enough
data to run
experiments
and draw
convincing
conclusions
(expensive)

Time
Resources
Expertise
Green computing
(energy consumption)

No matter the
area,
experimental
evaluations
need to be
developed

What now?!

Synthetic
Workflows

Instances
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Synthetic Workflow Generation

e Real workflows show a @ - ‘

& < & oY v WY

repeated patterns. /A AN NG o b BN

e Synthetic Workflow M Oy (P
Generators can leverage w N w
them to produce more Q) . &

realistic instances. %O -® g e -® "B




WfChef @

Automated generator of workflow
generators
Collection of algorithms to create realistic
synthetic workflow instances of any size
Inputs
o Set of real-world workflow instances
o Desired instance size (hnumber of
tasks)
Analyzes the instances
Finds common patterns
Produces a recipe for the application
Replicate patterns to produce new graphs
with desired size

Task Type
Same type of

computation

\\//




WfChef @

Type Hash

Top Down (TD)
Bottom Up (BU)

Task Type
Type Hash = TD + BU

TDr := @ + red = red
BUr :={BUp, BUb} + red = yellow-purple-yellow-blue-red
THr :=TDr + BUr = red-yellow-purple-yellow-blue-red

TDp := {TDr} + purple = red-purple
BUp := {BUy} + purple = yellow-purplé
THp := TDp + BUp = red-purple-y€llow-purple

TDb := {TDr} + blue = red-<blue

THb := TDb + BUb = red-blue-y&low-blue

TDy := {TDp, TDb} + yellow = red-purple-red-blue-ye
BUy := yellow + @ = yellow
THy := TDy + BUy = red-purple-red-blue-yellow-yellow



WfChef @

WfChefRecipe

Input: Set of real instances (W)
Qutput: Data structure that
encodes information extracted

Algorithm 1 Algorithm to compute a recipe based on a set of
real workflow instances.

1: function WrCHEFRECIPE(W)

2
3
4
h
6:
g
8:

POs « |} > dictionary of POs
for each w e W do
POs|w] « [] > list of POs in w

for each unvisited vertex v in w do
mark v as visited
v = an unvisited vertex s.t. TH(v') =TH(v)
if v 1s not found then continue
mark v as visited
A = CLoSESTCOMMONANCESTORS(v,v")
D = CLosESTCOMMONDESCENDANTS(v,V)
if A = 0or B =0 continue
POs|w].append(SuBDAG(v, A, B))
POs|w].append(SuBDAG(v, A, B))
end for
end for
Errors « {} » dictionary of errors
for each w e W do
for each b€ W s.t. |b] < |w| do
2 « RepLICATEPOs (lwl, b, POs|b], POs|w])
Errors|b][w] « ERrROR(w,g)
end for
end for
return new Recipe(W, POs, Errors)

25: end function




WfChef @
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WfChef @
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WfChef @

Find Pattern

Round 3
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WfChef @

Find Pattern

Round 4

shared




WfChef @

Find Patterns




WfChef @

Find Patterns




WfChef @

Find Patterns

Different Type Hashes

@
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WfChef @

Replicate and WfChefGenerate

Algorithm 3 Algorithm for replicating POs in a base work-

flow.

Algorithm 2 Algorithm for generating a synthetic workflow

with n vertices based on a recipe.

1: function WFCHEFGENERATE(rep, n)

2 closest < w in rep.W s.t. ||w| — n| is minimum
3 base < w in rep.W U rep.Errors|w, closest|

4 g < REPLICATEPOS (n, base, rep.POs|base],

5 return g
6. end function

IS minimum

r.POs|closest))

1: function REPLICATEPOS(n, base, bPOs, ¢POs)

AL HW N

10:
11:
12
13
14

g + base
prob « {} > dictionary of probabilities
for each po € bPOs do
nc = |{p € cPOs | TH(p) = TH(po)}|
tc = |{p € cPOs}|
nb = |{p € bPOs | TH(p) = TH(po)}|
prob|po| « (nc/tc)/nb
end for
while |g| < n do
po + sample from bPO with distribution prob
g + ADDPO(g, po)
end while
return g

15: end function

23



WfChef @

Replicate &
Generate

il
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WfChef & Results
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WfChef & Results

Structure Evaluation

Approximate Edit Distance

WfChef leads to lower average
AED for its instances, which
means that they are more
faithful to real workflow
instances
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WfChef & Results

Structure Evaluation

Type Hash Frequency

THF metric is computed as the
Root Mean Square Error (RMSE)
of the frequencies of node
type hashes

WifChef outperforms both
baselines by wide margins
despite having large variances
for some workflow scales

__ epigenomics
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WfChef & Results

Performance Evaluation

Makespan

WfChef produces synthetic
workflow instances with
realistic makespans

WfChef is very comparable to
WorkflowHub but is fully
automated

epigenomics = Real * WorkflowGenerator = WorkflowHub = WfChef

3500
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WfChef & Results

Performance Evaluation

RMSPE (Root Mean Square
Percent Error) of tasks start
dates

WfChef and WorkflowHub are
very comparable in this metric
also, but WfChef has the
advantage of being an
automated tool.
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Accuracy vs Dataset Size

How many real samples does WfChef need for good results?

e WfChef does not need all the available real samples to generate
accurate synthetic workflow instances.
e Findings:
o Adding more instances did not yield better results (no new
patterns)
o Increase computational complexity
e Experiment:
o Remove instances largest to smallest
o Use AED and THF metrics to measure performance degradation

30
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Accuracy vs Dataset Size
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Accuracy vs Dataset Size

AED values vs. the fraction of real instances used as input.

e AED - cost of editing and
edge/node (edit cost = 1)

° AED - total_cost / - Epigenomics - Cycles - Blast ~ Montage
#edges
e Best results:
o 100% of samples
e \Worst results:
o 25% of samples or
single sample
e Difference between min | A
and max: 100% 75% 50% 25%
o O _ 0362 Dataset Size

]

-
wn
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o
n

_________

Approximate Edit Distance (AED)

o

one_sample




Accuracy vs Dataset Size

THF values vs. the fraction of real instances used as input.

THF - metric computed as
the Root Mean Square Error
(RMSE) of the frequencies
of node type hashes

AED = total_cost / #edges
Best results:

o 100% of samples
Worst results:

o 25% of samples or
single sample
Difference between min
and max:
o O0-00084
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Accuracy vs Dataset Size

Are all the real instances needed?

e Using only the smallest samples (smallest 50%) gets almost as good
results as using all of the samples
e The performance degradation is minimal

A small number of real samples as input to WfChef is
sufficient to produce realistic synthetic instances

34



Part 1

What kind of

science does
this enable?
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Simulation Challenges

Who came first?

Not enough real workflow instances, not enough real workflow
executions for analysis

Solution: execution simulation

A good simulation model requires a reliable simulator
To guarantee reliability in simulators: calibration
To calibrate simulators, real executions are necessary
o There are not enough real executions
o To calibrate a simulator, we must use applications that we have
control over the parameters and are aware of resulting behaviors

How can we create an Accurate Digital Twin (simulator)?
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Workflow
Benchmarks



Why do we need workflow benchmarks?

Problem

e Lack of real or simulated workflow execution

e Diversity of production workflows, execution platforms, and
proliferation of workflow systems

e Need to quantify and compare workflow system performance

e Solution: Workflow Benchmarking

38



Extra Motivation

Result: Ratio between execution times (makespans)

e Values abovey =1

o Cascadelake faster
e Values belowy =1

o Skylake faster

Horizontal axis:
T: number of tasks
D: data footprint in GB

C: cpu-bound
M: memory-bound
B: balanced
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Extra Motivation

Result: Ratio between execution times (makespans)

Results differ drastically
o Width of the
envelope
Trends are difficult to
explain
o SoyKb vs
1000Genome
Difficult to
explain/predict workflow
makespans based solely
on platform and
workflow configurations
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WfBench &)

Twofold Approach

Representative task
benchmarks

Representative workflow
benchmarks with multiple
tasks

e It ELisatiin
|100MB| |100MB 100MB|

o b

@mu u/m (T
-

[19omMB|  [190MB | [ 190 MB |

45MB (| 75MB

asMB | 75MB | [45MB |

]

Number of tasks: 9
Data footprint: 1700 MB

45MB || 75MB |

(I}

L]

T
L

l@‘
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WfBench generates realistic workflow tasks with arbitrary 1/O, CPU and
memory demands, and realistic workflow task graphs based on the real
application, agnostic to WMS and independent of platform




WfBench &)

What is expected of a good Workflow Benchmark Generator?

e Configurable to represent a range of performance characteristics and
structures

e Representative of the real-world workflow application

e Automatically translatable into executable benchmarks of arbitrary
workflows systems

e Goal: Measuring the performance of workflow systems not the
machines they are running on

42
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WfBench &)

Twofold Approach — Representative Workflow Task Benchmark
e Read input

e Compute 250 MB
o |nputs: ¥
m Ccpu work
m memwork
| I
m non-mem computation (f) —
o CPU-intensive: Calculates m up to cpuwork

o Mem-intensive: Access random positions in _\%\

array adding one unit to it up until memwork
e Write output
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WfBench &)

Twofold Approach — Representative Workflow Benchmark

WfChef @
e Automatic generator of realistic synthetic
workflow generators
e |nputs
o Set of real-world workflow instances

o Desired instance size (number of tasks)
Analyzes the instances

Records common patterns
Creates a recipe
Replicate patterns




WfBench &)

Twofold Approach

e |nput:
o Desired # tasks
o WfChef workflow recipe
e Generation:
o Uses the recipe to generate task graph
e For each task user can specify:
o (n, cpuwork, memwork, f)
o Data volume/task or total data
footprint
e OQOutput:
o JSON object that fully describes
workflow
o JSON + Tasks benchmarks = Workflow
Benchmark

v

100 MB

45
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WfBench &)

Validation of the approach — Task Benchmark

o task=frequency task=individuals task=mutation_overlap task=mAdd
]
©
(ol
)
=
-~
=
&
2,25252,25%595%%  ©,952,2,95%252:%5%  2,25252,95%595%%  ©,95252,25252:%5%
o task=mBgModel task=mProject task=mViewer
= machine
©
o -@- cascadelake
g -9~ haswell
s} -@- nehalem
é -88- skylake
2,950,0,95952:9% 2,925252,95252:%5%  ©,95052,25252:25%
f(fraction of CPU operations) f(fraction of CPU operations) f(fraction of CPU operations)
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Is it possible to configure our workflow task benchmark so that its
performance behavior is similar to each of these real workflow tasks?




WfBench &)

Validation of the approach — Workflow Benchmark

TABLE 1V
COMPARISON BETWEEN THE REAL-WORLD [000GENOME WORKFLOW
APPLICATION AND THE CALIBRATED WORKFLOW BENCHMARK.

#ch fftasks makespan (sec) makespan
a 1000Genome  Benchmark  1000Genome  Benchmark % difference

1 66 66 971 892 -8.13 %
2 232 234 2548 2531 -0.66 %
3 648 645 6321 5645 -10.56 %
4 1548 1548 13409 13553 1.07 %

WifBench makes it possible to generate workflow benchmark that have
structure, performance characteristics, and execution patterns, that are very
similar to that of real-world workflow.




What about existing benchmarks?
Why do they not work?

e Application benchmarks:
o Identifying bottlenecks and comparing HPC platforms
o We are interested in workflow systems performance, such as
overhead, and not machine performance
e Existing individual task benchmarks
o Not customizable enough to be set up to behave as the real
workflow tasks
e Real application instances as benchmarks:
o Limited sample (Not scalable or elastic)

48
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What about existing benchmarks?
Why do they not work?

e Current benchmark suites capture some but not all features of a
workflow application:

o  Workflows: collection of different “types” of tasks (I/O, GPU, CPU,
memory consumption)

o Tasks of same type can have a different resource consumption

o Concurrent task execution: performance interference

o WMSs can configure workflow execution is various ways (task
scheduling decisions)

Workflow benchmarks need to execute seamlessly in a wide range
of WMSs rather than being implemented for a specific one.
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What about existing benchmarks?

Experimental Evaluation

Data Footprint (GB) © 100 & 1000
WOkalOW throughPUt (#taSkS/SeC) ® blast ® cycles ® epigenomics ® montage @ soykb
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Use Cases Evaluation of Cloud .

Simulation Energy Capability
Consu mption e Does an HPC cloud system have the

e Used WBench instances to calibrate a same or better capability of running

simulator and collect power consumption HPC work.loads than. supercomputers?
data e WifBench is the official benchmark of

Analytical study of accuracy of traditional OLCEF-6 procurement Process

energy-consumption model (Linear Model)

Result: underestimate energy-consumption .
by up to 360% H & e

= aws

2 gcs
Solution: Proposed new model that ///\
includes I/0 operations and idle time e ; |
16 32 64 128 256
# nodes
2500
= y P Yo Encrgy Error (KWh)
Workfiow Algorithm Max Mecan Stand. Deviation 2000
Montage SPSS-EB 0.45 (160.71%) 0.09  (39.31%) 0.17  (52.07%) .
EnRcal 0.22  (17.01%) 0.06  (7.81%) 0.01 (1.89%) 2150 u
SoyKB3 SPSS-EB 0.66 (33.76%) 0.13  (5.37%) 0.37  (15.72%) g aws
EnRcal 0.12  (10.46%) 0.11 (9.17%) 0.02  (1.65%) € 1000 B e
1000Genome  SPSS-EB 5.88 (360.57%) 1.95 (187.46%) 1.80 (120.50%) < ges
EnRcal 0.35 (26.29%) 0.11  (14.65%) 0.10  (7.08%) 560
Table 1. Energy consumption error (maximum, mean, and standard deviation) for
both algorithms and for each set of workflow instances. 0
16 2 o4 128 256

# nodes
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W1tCommons



WfCommons

wfcommons.org

WfCommons is a

framework that provides
a collection of tools for

analyzing
producing realistic
synthetic workflow
traces, and

/
simulating workflow
executions.
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They use
WfCommons

University of Southern California
Oak Ridge National Laboratory
Academic Computer Centre
Cyfronet AGH (Poland)

The University of Western
Australia

Imperial College London

Beijing Institute of Technology
Universidad Politécnica de

Cartagena

Iran University of Science and
Technology

University of California, [rvine
University of Innsbruck (Austria)
HPE

NVidia
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Al
Workflows
for Al in
Various
Domains



Al is accelerating discovery but ...

e Many domain scientists face
significant barriers incorporating Al in
their research.

e The variety of platforms, models, and
processes generates unrealistic
expectations.

e (Good choices are a combination of
formal training and tacit expertise.

e Tacit expertise comes from years of
experience and lots of trial and error
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Al expertise gap

e Key challenges: & Domain Scientist's View
o Lack of Al/ML formal
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Insights from domain
scientists

e We interviewed 11 Schmidt Al
postdoctoral researchers at UCSD
Barriers are consistent across all
domains

“Interviewee 1 struggled with basic infrastructure
tasks, such as uploading data to a supercomputer,
while Interviewee 7 found the training and
implementation process intimidating without
curated examples or documentation.”
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TABLE I: Anonymized Interviewee Disciplines

Interviewee ID

Scientific Domain / Focus

Interviewee |
Interviewee 2
Interviewee 3
Interviewee 4
Interviewee 5
Interviewee 6

Interviewee 7
Interviewee 8

Interviewee 9
Interviewee 10
Interviewee 11

Medical Imaging / Cardiac CT

Behavioral Neuroscience / Sleep Tracking
Behavioral Neuroscience (Visualization Focus)
Molecular Modeling / Protein Binding
Ecology / Root Systems and Microscopy
Structural Biology and Genomics / HIV Evo-
lution

Earth Systems Modeling

Autism and Protein Oscillation / Transfer
Learning

Quantum Chemistry / Neural Potentials
Evolutionary Genomics / ML Benchmarking
Molecular Dynamics / COVID-19 Protein Sys-
tems




What are Agents of Intelligence?

Modular, context-aware, human-in-the-loop companions
We focus on 4 capabilities:
o Sensing: awareness of the current workflow state
o Automating: help reduce cognitive load
o Recommending: able to suggest appropriate models, resources,
visualizations, or workflow steps based on best practices
o Learning: improving over time based on user feedback and usage
patterns across domains
Our goal: encode scientific intuition into intelligent agents that
support decision-making across the research lifecycle.
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Design Principles

Context-awareness

¢o

&

Human-in-the-loop
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Across

the
data
flow

Data Sources

; .

e

IR .
L1

| JU UU |

* NAIRR
datasets

+ Repositories

+ Instruments

+ Sensors

*+ Facilities,
etc..

Data

Acquisition

Data
Adapters:
Customizable
metadata/data
ingestion;
Heterogenous
data sources
and types

(Meta) Data
Curation

Registration
Indexing

Discovery

Metadata
catalog
Extensible
search engine
Recommendation
services

Data Access

Data Staging

In-situ Data
Analytics

High-
Performance
data staging &
in-situ
processing
Data access
optimization
(caching, pre-
fetching,
recommendation)
Leverage
Pelican data

Data
Processing

Data-driven

Al/ML-based
Workflows

Services
gateway
(support
notebooks)

* Leverage .

Distributed
& cloud
resources

+ Data-driven

stream
processing

Product
Generation

Curation

Sharing
Archival

Data
product &
re-
streaming
Archival
support
(including
using
Pelican)
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Integration with NDP

e Why the National Data
Platform?

o Federated metadata-rich,

workflow-awareness,
domain-agnostic

o Deployment Modalities:
Embedded, Orchestrated
and On-Demand

o Existing and extensible
policy framework

62

Analysis
agents

National

Data
@jloﬁo

Infrastructure
agents



Use Cases BanditWare Eazny

Wildland Fire Science

( Ho {D,mm@e,cpu,...] ® An online recommendation system for
hardware selection, built on contextual
[D, rumir;e,cpu,m] multi-armed bandits.
— QIQ e Keyidea: Learns hardware workflow fit
: ] in real time without needing large
historical datasets.

=t

Application Retrieve ,
Performance Useful e How it works:
DataFrame Data o  Collect workflow features (e.g., size,
tasks).
C— . .
o, rantime, op, . o  Predict runtimes across hardware
HO options.
g o Balance exploration (try new
BanditWare Hnl hardware) and exploitation (pick

- g ] best-so-far).
< - = o Update model continuously.




Broader Implications

The framework is not domain-specific, the same categories of agents
(Data, Model, Infrastructure, Analysis) can support many domains.

Life Sciences: Assist with genomics pipelines, model selection for
protein structures, metadata curation

Neuroscience & Behavioral Sciences: Data labeling, time-series
model recommendations, visualization of neural activity

Physics & Chemistry: Simulation setup, parameter tuning, resource
optimization (HPC/cloud)

Environmental & Earth Systems: Large-scale data ingestion,
cross-domain learning, uncertainty-aware analysis

Humanities and Language: Transfer learning for low resource
language revitalization, data unlearning for policy enforcement
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Part 11

Beyond the
Sciences



Humanities Research and Al

e Interest around Al for the humanities is exploding
o Semantic search in historical archives
o Historical artifacts reconstruction
o Manuscript decipherment
o Authorship attribution
e How to support humanities researchers’ computational needs?
o The variety of tools available and the expertise gap can be
overwhelming for these researchers
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Use Cases

Research Questions

Al fO r En d an g ere d e Can we successfully use existing transfer
L R . I. . learning models and federated data to
an g ua g e Revitalization represent the grammar and vocabulary of

an extremely low-resource language?
What are best practices for creating
digital corpora of endangered languages
while respecting cultural protocols?
o Data unlearning
o  Policy implementation
How can Al-based tools (e.g., speech
recognition, chatbots) support
endangered language learning?
How can the success of Al-supported
language revitalization projects be
quantified?

e Humanities applications often have a
cultural aspect to them
e Faculty from LMU and USC are actively
working on using Generative Al to support
language revitalization efforts
e Large barrier: lack of infrastructure for
hosting/accessing data, models, etc. that
take cultural protocols into consideration
o Some stories from Dr. Coleman’s tribe
can only be told in the winter time

And many more ...



Bridging expertise gaps makes research
more inclusive & effective
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