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ABSTRACT

This paper proposes Prism, a secret sharing based approach to com-
pute private set operations (i.e., intersection and union), as well as
aggregates over outsourced databases belonging to multiple owners.
Prism enables data owners to pre-load the data onto non-colluding
servers and exploits the additive and multiplicative properties of
secret-shares to compute the above-listed operations in (at most)
two rounds of communication between the servers (storing the
secret-shares) and the querier, resulting in a very efficient imple-
mentation. Also, Prism does not require communication among the
servers and supports result verification techniques for each oper-
ation to detect malicious adversaries. Experimental results show
that Prism scales both in terms of the number of data owners and
database sizes, to which prior approaches do not scale.
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1 INTRODUCTION

With the advent of cloud computing, database-as-a-service
(DaS) [29] has gained significant attention. Traditionally, the DaS
problem focused on a single database (DB) owner, submitting suit-
ably encrypted data to the cloud over which DB owner (or one of
its clients) can execute queries. A more general use-case is one in
which there are multiple datasets, each owned by a different owner.
Data owners do not trust each other, but wish to execute queries
over common attributes of the dataset. The query execution must
not reveal the content of the database belonging to one DB owner
to others, except for the leakage that may occur from the answer
to the query. The most common form of such queries is the private
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set intersection (PSI) [23]. An example use-case of PSI include syn-
dromic surveillance, wherein organizations, such as pharmacies and
hospitals share information (e.g., a sudden increase in sales of spe-
cific drugs such as analgesics or anti-allergy medicine, telehealth
calls, and school absenteeism requests) to enable early detection
of community-wide outbreaks of diseases. PSI is also a building
block for performing joins across private databases — it essentially
corresponds to a semi-join operation on the join attribute [38].

Private set computations over datasets owned by different DB
owners/organizations can, in general, be implemented using secure
multiparty computation (SMC) [26, 44, 57], a well-known cryp-
tographic technique that has been prevalent for more than three
decades. SMC allows DB owners to securely execute any function
over their datasets without revealing their data to other DB owners.
However, SMC can be very slow, often by order of magnitude [41].
Consequently, techniques that can more efficiently compute private
set operations have been developed; particularly, in the context of
PSI and private set union (PSU) [19, 40]. PSU refers to privately
computing the union of all databases. Approaches using homomor-
phic encryption [15], polynomial evaluation [23], garbled-circuit
techniques [32], Bloom-filter [47], and oblivious transfer [49, 50]
have been proposed to implement private set operations.

Recent work on private set operations has also explored perform-
ing aggregation on the result of PSI operations. For instance, [34]
studied the problem of private set intersection sum (PSI Sum), moti-
vated by the internet advertising use-case, where a party maintains
information about which customer clicked on specific advertise-
ments during their web session, while another has a list of trans-
actions about items listed in the advertisements that resulted in a
purchase by the customers. Both parties might wish to securely
learn the total sales that attributed due to customers clicking on
advertisements, while neither would like their data to be revealed to
the other for reasons including fair/competitive business strategies.

Existing approaches on private set computation (including recent
work on aggregation) are limited in several ways:
• Work on PSI or PSU has largely focused on the case of two DB own-
ers, with some exceptions that address more than two DB owners
scenarios, e.g., [16, 23, 31, 33, 40, 41, 58]. There are several interest-
ing use-cases, where one may wish to compute PSI over multiple
datasets. For instance, in the syndromic surveillance example listed
above, one may wish to compute intersection amongst several in-
dependently owned databases. Generalizing existing two-party PSI
or PSU approaches to the case of multiple DB owners results in
significant overhead [41]. For instance, [3], which is designed for
two DB owners, incurs (𝑛𝑚)2 communication cost, when extended
to𝑚 > 2 DB owners, where 𝑛 is the dataset size.
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Name Age Disease Cost

𝜏1 John 4 Cancer 100
𝜏2 Adam 6 Cancer 200
𝜏3 Mike 2 Heart 300

Table 1: Hospital 1.

Name Age Disease Cost

𝜈1 John 8 Cancer 100
𝜈2 Adam 5 Fever 70
𝜈3 Bob 4 Fever 50

Table 2: Hospital 2.

Name Age Disease Cost

𝜌1 Carl 8 Cancer 300
𝜌2 John 4 Cancer 700
𝜌3 Lisa 5 Heart 500

Table 3: Hospital 3.

Note: 𝜏𝑖 , 𝜈𝑖 , and 𝜌𝑖 denote the 𝑖th tuples of tables.

• Techniques to privately compute aggregation over set operations
have not been studied systematically. In database literature, aggre-
gation functions [46] are typically classified as: summary aggrega-
tions (e.g., count, sum, and average) or exemplary aggregations (e.g.,
minimum, maximum, and median). Existing literature has only
considered the problem of PSI Sum [34] and cardinality determina-
tion, i.e., the size of the intersection/union [19, 22]. Techniques for
exemplary aggregations (and even for summary aggregations) that
may compute over multiple attributes have not been explored.
• Many of the existing solutions do not deal with a large amount of
data, due to either inefficient cryptographic techniques or multiple
communication rounds amongst DB owners. For instance, recent
work [41, 42, 58] dealt with data that is limited to sets of size less
than or equal to ≈1M in size.

This paper introduces Prism — a novel approach for comput-
ing collaboratively over multiple databases. Prism is designed for
both PSI and PSU, and supports both summary, as well as, exem-
plar aggregations. Unlike existing SMC techniques (wherein DB
owners compute operations privately through a sequence of com-
munication rounds), in Prism, DB owners outsource their data
in secret-shared form to multiple non-communicating public

servers. As will become clear, Prism exploits the homomorphic
nature of secret-shares to enable servers to compute private set
operations independently (to a large degree). These results are then
returned to DB owners to compute the final results. In Prism, any
operator requires at most two communication rounds between DB
owners and servers, where the first round finds tuples that are in
the intersection or union of the set, and the second round computes
the aggregation function over the objects in the intersection/union.

By using public servers for computation over secret-shared data,
Prism achieves the identical security guarantees as existing SMC
systems (e.g., Sharemind [8], Jana [5], and Conclave [54]). The key
advantage of Prism is that by outsourcing data in secret shared form
and exploiting homomorphic properties, Prism does not require
communication among server before/during/after the computation,
which allows Prism to perform efficiently even for large data sizes
and for a large number of DB owners (as we will show in experi-
ment section). Since Prism uses the public servers, which may act
maliciously, Prism supports oblivious result verification methods.
Advantages of Prism. In summary, Prism offers the following
benefits: (i) Information-theoretical security: It achieves information-
theoretical security at the servers and prevents them to learn any-
thing from input/output/access-patterns/output-size. (ii) No com-

munication among servers: It does not require any communication
among servers, unlike SMC-based solutions. (iii)No trusted entity: It
does not require any trusted entity that performs the computation
on the cleartext data, unlike the recent SMC system Conclave [54].
(iv) Several DB owners and large-sized dataset: It deals with several
DB owners having a large-size dataset.
Full version [1]. provides result verification methods for differ-
ent aggregation approaches, correctness, and information leakage
discussions.

2 PRIVATE SET OPERATIONS

We, first, define the set of operations supported by Prism. Let
DB1, . . . ,DB𝑚 (𝑚 > 2) be independent DBs owned by𝑚 DB owners
DB1, . . . ,DB𝑚 . We assume, each DB owner is (partially) aware of
the schema of data stored at other DB owners. Particularly, DB own-
ers have knowledge of attribute(s) of the data stored at other DB
owners on which the set-based operations (intersection/union) can
be performed. Also, DB owners know about the attributes on which
aggregation functions be supported. This assumption is needed
to ensure that PSI/PSU and aggregation queries are well defined.
However, the schema of data at different databases may be different.

Now, we define the private set operations supported by Prism for-
mally and their corresponding privacy requirements (corresponding
SQL statements are shown in Table 4). To do so, (and in the rest of
the paper), we use the example tables shown in Tables 1, 2, and 3
that are owned by three different DB owners (in our case, hospitals).

(1) Private set intersection (PSI) (§5). PSI finds the common values
among𝑚 DB owners for a specific attribute 𝐴𝑐 , i.e., DB1 .𝐴𝑐 ∩ . . . ∩
DB𝑚 .𝐴𝑐 . For example, PSI over disease column of Tables 1, 2, and 3
returns {Cancer} as a common disease treated by all hospitals.
Note that a hospital computing PSI on disease should not gain any

information about other possible disease values (except for the result

of the PSI) associated with other hospitals.
(2) Private set union (PSU) (§7). PSU finds the union of values among

𝑚 DB owners for a specific attribute𝐴𝑐 , i.e., DB1 .𝐴𝑐 ∪ . . .∪DB𝑚 .𝐴𝑐 .
E.g., PSU over disease column returns {Cancer, Fever, Heart} as
diseases treated by all hospitals. A hospital computing PSU over

other hospitals must not gain information about the specific diseases

treated by others, or how many hospitals treat which disease.
(3) Aggregation over private set operators (§6.) Aggregation

𝐴𝑐
G𝜃 (𝐴𝑥 ) computes an aggregation function 𝜃 on attribute𝐴𝑥 (𝐴𝑐

≠𝐴𝑥 ) for the groups corresponding to the output of set-based oper-
ations (PSI/PSU) on attribute𝐴𝑐 . E.g., the aggregation function sum
on cost attribute corresponding to PSI over disease attribute (i.e.,
diseaseG𝑠𝑢𝑚 (cost)) returns a tuple {Cancer,1400}. The same aggre-
gation function over PSU will return {⟨Cancer,1400⟩, ⟨Fever,120 ⟩, ⟨
Heart,800⟩}. Likewise, the output of aggregation diseaseG𝑚𝑎𝑥 (age)
over PSI would return {Cancer,8}, while the same over PSU would
return {⟨Cancer,8⟩, ⟨Fever,5⟩, ⟨Heart,5⟩}. Note that the count oper-
ation does not require specifying an aggregation attribute 𝐴𝑥 and
can be computed over the attribute(s) associated with PSI/PSU. E.g.,
count over PSI (PSU) on disease column will return 1 (3), respec-
tively. From the perspective of privacy requirement, in the case of
PSI on disease column, a hospital executing an aggregation query
(maximum of age or sum of cost) should only gain information
about the answer, i.e., elements in the PSI and the corresponding ag-

gregate value. It should not gain information about other diseases
that are not in the intersection. Likewise, for PSU, the hospital will
gain information about all elements in the union and their corre-

sponding aggregate values, but will not gain any specific information

about which database contains which disease values, or the number

of databases with a specific disease.



PSI SELECT 𝐴𝑐 FROM 𝑑𝑏1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 FROM db𝑚

PSU SELECT 𝐴𝑐 FROM db1 UNION . . . UNION SELECT 𝐴𝑐 FROM db𝑚

PSI count SELECT COUNT(𝐴𝑐 ) FROM 𝑑𝑏1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 FROM db𝑚

PSI 𝜃
𝜃 ∈ (AVG, SUM, MAX, MIN, Median)

CREATE VIEW CommonAc as SELECT 𝐴𝑐 FROM db1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 FROM db𝑚

SELECT 𝐴𝑐 , 𝜃(𝐴𝑥 ) FROM (SELECT 𝐴𝑥 , 𝐴𝑐 FROM db1, CommonAc WHERE db1 .Ac = CommonAc .Ac UNION ALL . . . UNION ALL
SELECT 𝐴𝑥 , 𝐴𝑐 FROM db𝑚, CommonAc WHERE dbm .Ac = CommonAc .Ac) as inner_relation Group By 𝐴𝑐

Table 4: SQL syntax of operations supported by Prism.

3 PRELIMINARY

This section presents the cryptographic concepts that serve as build-
ing blocks for Prism, an overview of Prism, and security properties.

3.1 Building Blocks

Prism is based on additive secret-sharing (SS), Shamir’s secret-
sharing (SSS), cyclic group, and pseudorandom number generator.
We provide an overview of these techniques, below.
Additive Secret-Sharing (SS). Additive SS is the simplest type of
the SS. Let 𝛿 be a prime number. Let G𝛿 be an Abelian group under
modulo addition𝛿 operation. All additive shares are defined overG𝛿 .
In particular, the DB owner creates 𝑐 shares 𝐴(𝑠)1, 𝐴(𝑠)2, . . . , 𝐴(𝑠)𝑐
over G𝛿 of a secret, say 𝑠 , such that 𝑠 = 𝐴(𝑠)1 +𝐴(𝑠)2 + . . . +𝐴(𝑠)𝑐 .
The DB owner sends share 𝐴(𝑠)𝑖 to the 𝑖th server (belonging to a
set of 𝑐 non-communicating servers). These servers cannot know
the secret 𝑠 until they collect all 𝑐 shares. To reconstruct 𝑠 , the DB
owner collects all the shares and adds them. Additive SS allows
additive homomorphism. Thus, servers holding shares of different
secrets can locally compute the sum of those shares. Let 𝐴(𝑥)𝑖 and
𝐴(𝑦)𝑖 be additive shares of two secrets 𝑥 and 𝑦, respectively, at a
server 𝑖 , then the server 𝑖 can compute 𝐴(𝑥)𝑖 +𝐴(𝑦)𝑖 that enable
DB owner to know the result of 𝑥 + 𝑦. The precondition of additive
homomorphism is that the sum of shares should be less than 𝛿 .
Example. Let G5 = {0, 1, 2, 3, 4} be an Abelian group under the
addition modulo 5. Let 4 be a secret. A DB owner may create two
shares: 3 and 1 (since 4 = (3 + 1) mod 5).
Shamir’s Secret-Sharing (SSS) [52]. Let 𝑠 be a secret. A DB owner
randomly selects a polynomial of degree 𝑐 ′ with 𝑐 ′ random coeffi-
cients, i.e., 𝑓 (𝑥) = 𝑎0+𝑎1𝑥 +𝑎2𝑥2+· · ·+𝑎𝑐′𝑥𝑐

′ , where 𝑓 (𝑥) ∈ F𝑝 [𝑥],
𝑝 is a prime number, F𝑝 is a finite field of order 𝑝 , 𝑎0 = 𝑠 , and 𝑎𝑖 ∈ N
(1 ≤ 𝑖 ≤ 𝑐 ′). The DB owner distributes 𝑠 into 𝑐 shares by computing
𝑓 (𝑥) (𝑥 = 1, . . . , 𝑐) and sends an 𝑖th share to an 𝑖th server (belonging
to a set of 𝑐 non-colluding servers). The secret can be reconstructed
using any 𝑐 ′ + 1 shares using Lagrange interpolation [18]. SSS al-
lows additive homomorphism, i.e., if 𝑆 (𝑥)𝑖 and 𝑆 (𝑦)𝑖 are SSS of two
secrets 𝑥 and 𝑦, respectively, at a server 𝑖 , then the server 𝑖 can
compute 𝑆 (𝑥)𝑖 + 𝑆 (𝑦)𝑖 , which will result in 𝑥 + 𝑦 at DB owner.
Cyclic group under modulo multiplication. Let 𝜂 be a prime
number. A groupG is called a cyclic group, if there exists an element
𝑔 ∈ G, such that all 𝑥 ∈ G can be derived as 𝑥 = (𝑔𝑖 ) (where 𝑖 in an
integer number Z) under modulo multiplicative 𝜂 operation. The
element 𝑔 is called a generator of the cyclic group. The number of
elements in G is called the order of G. Based on each element 𝑥 of a
cyclic group, we can form a cyclic subgroup by executing 𝑥𝑖 mod 𝜂.
Example. 𝑔 = 2 is a generator of a cyclic group under multiplication
modulo 𝜂 = 11 for the group: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Note that
the group elements are derived by 2𝑖 mod 11. By taking the ele-
ment 5 of this cyclic group, we form the following cyclic subgroup
{1, 3, 4, 5, 9}, under multiplication modulo 𝜂 = 11, by 5𝑖 mod 11.

Permutation function PF . Let 𝐴 be a set. A permutation func-
tion PF is a bijective function that maps a permutation of 𝐴 to
another permutation of 𝐴, i.e., PF : 𝐴→ 𝐴.
Pseudorandom number generator PRG: is a deterministic and
efficient algorithm that generates a pseudorandom number se-
quence based on an input seed [7, 25].

3.2 Entities and Trust Assumption

Prism assumes the following four entities:
(1) The 𝑚 database (DB) owners (or users), who wish to execute

computation on their joint datasets. We assume that each DB owner
is trusted and does not act maliciously.

(2) A set of 𝑐 ≥ 2 servers that store the secret-shared data outsourced
by DB owners and execute the requested computation from authen-
ticated DB owners. Data transmission between a DB owner and
a server takes place in encrypted form or using anonymous rout-
ing [27] to prevent the locations of all servers from an adversary.
We assume that servers do not maliciously communicate (i.e., non-
communicating servers) with each other in violation of Prism
protocols. Unlike other MPC mechanisms [8], (as will be clear
soon), Prism protocols do not require the servers to communicate
before/during/after the execution of the query. The security of
secret-sharing techniques requires that out of the 𝑐 servers, no
more than 𝑐 ′ < 𝑐 communicate maliciously or collude with each
other, where 𝑐 ′ is a minority of servers (i.e., less than half of 𝑐).
Thus, we assume that a majority of servers do not collude and com-
municate with each other, and hence, a legal secret value cannot be
generated/inserted/updated/deleted at the majority of the servers.
Also, note that the collusion of servers in violation of the protocol
is a general requirement for secret-sharing based protocols, and a
similar assumption is made by many prior work [8, 17, 52, 56]. This
assumption is based on factors such as economic incentivization
(violation is against their economic interest), law (illegal to col-
lude), and jurisdictional boundaries. Such servers can be selected
on different clouds, which make the assumption more realistic.
For the purpose of simplicity, we assume, none of the servers col-
ludes with each other, i.e., they do not communicate directly. Thus,
to reconstruct the original secret value from the shares, two ad-
ditive shares suffice. In the case of PSI sum (as in §6.1), we need
to multiply two shares, each of degree one, and that increases the
degree of the polynomial to two. To reconstruct the secret value of
degree two, we need at least three multiplicative shares.
While we assume that servers do not collude, we consider two
types of adversarial models for servers in the context of the compu-
tation that they perform: (i) Honest-but-curious (HBC) servers:
correctly compute the assigned task without tampering with data
or hiding answers. It may exploit side information (e.g., the internal
state of the server, query execution, background knowledge, and
output size) to gain information about stored data, computation,
or results. HBC adversarial model is considered widely in many
cryptographic algorithms [13, 29, 55]. (ii) Malicious adversarial



servers: can delete/insert tuples from the relation, and hence, is a
stronger adversarial model than HBC.

(3) An initiator or oracle, who knows 𝑚 DB owners and servers.
Before data outsourcing by DB owners, the initiator informs the
identity of servers to DB owners and vice versa. Also, the initiator
informs the desired parameters (e.g., a hash function, parameters
related to Abelian and cyclic groups, PF , and RRG) to servers and
DB owners. The initiator is an entity trusted by all other entities and
plays a role similar to the trusted certificate authority in the public-
key infrastructure. The initiator never knows the data/results, since
it does not store any data, or data/results are not provided to servers
via the initiator. The role of the initiator has also been considered
in existing PSI work [51, 59].

(4) An announcer S𝑎 who participates only in maximum, minimum,
and median queries to announce the results. S𝑎 communicates (not
maliciously) with servers and initiator (and not with DB owners).

3.3 Prism Overview

Let us first understand the working of Prism at the high-level.
Prism contains four phases (see Figure 1), as follows:
Phase 0: Initialization. The initiator sends desired parameters
(see details in §4) related to additive SS, SSS, cyclic group, PF , and
PRG to all entities and informs them about the identity of others
from/to whom they will receive/send the data.

Initiator

Announcer

Servers

DB Owners

Figure 1: Prism model.

Phase 1: Data Outsourcing by DB

owners. DB owners create additive
SS or SSS of their data, by follow-
ing methods given in §5 for PSI and
PSU, §6.1 for PSI/PSU-sum, and §6.3
for PSI/PSU-max/min. Then, they out-
source their secret-shared data to non-
communicating servers. Note that in our
explanations, we will write the data out-
sourcing method along with query exe-
cution.
Phase 2: Query Generation by the DB owner. A DB owner who
wishes to execute SMC over datasets of different DB owners, sends
the query to the servers. For generating secret-shared queries for
PSI, PSU, count, sum, maximum, and for their verification, the DB
owner follows the method given in §5, §6.
Phase 3: Query Processing. Servers process an input query and
respective verification method in an oblivious manner. Neither the
query nor the results satisfying the query/verification are revealed
to the server. Finally, servers transfer their outputs to DB owners.
Phase 4: Final processing at the DB owners. The DB owner
either adds the additive shares or performs Lagrange interpolation
on SSS to obtain the answer to the query.

3.4 Security Property

Asmentioned in the adversarial setting in §3.2, an adversarial server
wishes to learn the (entire/partial) input and output data, while a
DB owner may wish to know the data of other DB owners. Thus,
a secure algorithm must prevent an adversary to learn the data
(i) from the ciphertext representation of the data, (ii) from query
execution due to access-patterns (i.e., the adversary can learn the
physical locations of tuples that are accessed to answer the query),

and (iii) from the size of the output (i.e., the adversary can learn
the number of tuples satisfy the query). The attacks on a dataset
based on access-patterns and output-size are discussed in [14, 35].
In order to prevent these attacks, our security properties are iden-
tical to the standard security definition as in [12, 13, 24]. An al-
gorithm is privacy-preserving if it maintains DB owners’ privacy,
data/computation privacy from the servers, and performs identical
operations regardless of the inputs.
Privacy from servers requires that datasets of DB owners must
be hidden from servers, before/during/after any computation. In
PSI/ PSU, servers must not know whether a value is common or
not, the number of DB owners having a particular value in the
result set. In the case of aggregation operations, the output of
aggregation over an attribute 𝐴𝑥 corresponding to the attributes
𝐴𝑐 involved in PSI or PSU should not be revealed to servers. Also,
in the case of max/median/min query, servers must not know the
max/median/min value and the identity of the DB owner who
possesses such values. Further, the protocol must ensure that the
server’s behavior in reading/sending the data must be identical
for a particular type of query (e.g., PSI or PSU), thereby the server
should not learn anything from query execution (i.e., hiding access-
patterns and output-sizes).
DB owner privacy requires that the DB owners must not learn
anything other than their datasets and the final output of the com-
putation. For example, in PSI/PSU queries, DB owners must only
learn the intersection/union set, and they must not learn the num-
ber of DB owners that does not contain a particular value in their
datasets. Similarly, in the case of aggregation operations, DB own-
ers must only learn the output of aggregation operation, not the
individual values on which aggregation was performed.
Properties of verification. A verification method must be obliv-
ious and find misbehavior of servers in computing a query. We
follow the verification properties from [36] that the verification
method cannot be refuted by the majority of the servers and should
not leak any additional information.

4 ASSUMPTIONS & PARAMETERS

Different entities in Prism protocols are aware of the following
parameters to execute the desired task:
Parameters known to the initiator. The initiator knows all pa-
rameters used in Prism and distributes them to different entities
(only once) as they join in PRISM protocols. Note that the initiator
can select these parameters (such as 𝜂, 𝛿) to be large to support in-
creasing DB owners over time without updating parameters. Thus,
when new DB owners join, the initiator simply needs to inform DB
owners/servers about the increase in the number of DB owners in
the system, but does not need to change all parameters.

Additionally, the initiator does the following: (i) Selects a poly-
nomial (F (𝑥) = 𝑎𝑚+1𝑥𝑚+1 + 𝑎𝑚𝑥𝑚 + . . . + 𝑎1𝑥 + 𝑎0, where 𝑎𝑖 > 0)
of degree more than𝑚, where𝑚 is the number of DB owners, and
sends the polynomial to all DB owners. This polynomial will be
used during the maximum computation. Importantly, this polyno-
mial F (𝑥) generates values at different DB owners in an order-
preserving manner, as will be clear in §6.3, and the degree of the
polynomial must be more than 𝑚 to prevent an entity, who has
𝑚 different values generated using this polynomial, to reconstruct



the secret value (a condition similar to SSS); and beyond 𝑚 + 1,
the degree of the polynomial does not impact the security, in this
case. (ii) Generates a permutation function PF 𝑖 , and produces four
different permutation functions that satisfy Equation 1:

PF 𝑠1 ⊙ PF𝑑𝑏1 = PF 𝑠2 ⊙ PF𝑑𝑏2 = PF 𝑖 (1)
Symbol ⊙ shows composition of permutations, and these functions
can be selected over a permutation group. The initiator provides
PF 𝑠1, PF 𝑠2 to all servers and PF𝑑𝑏1, PF𝑑𝑏2 to all DB owners.
Parameters known to announcer. Announcer S𝑎 knows 𝛿 , a
prime number used in modulo addition for an Abelian group (§3.1).
Parameters known to DB owners. All DB owners know the fol-
lowing parameters: (i)𝑚, i.e., the number of DB owners. (ii) 𝛿 > 𝑚,
(iii) 𝜂, where 𝜂 is a prime number used to define modular multipli-
cation for a cyclic group (§3.1). Note that DB owners do not know
the generator 𝑔 of the cyclic group. (iv) A common hash function.
(v) The domain of the attribute 𝐴𝑐 on which they want to execute
PSI/PSU. Note that knowing the domain of the attribute 𝐴𝑐 does
not reveal that which of the DB owner has a value of the domain.
(Such an assumption is also considered in prior work [32].) (vi) Two
permutation functions PF

db1
and PF

db2
. (vii) The polynomial

F (𝑥) given by the initiator. (viii) A permutation function PF , and
the same permutation function will also known to servers.

PSI, PSU, sum, average, count algorithms are based on the as-
sumptions 1-5. PSI verification, sum verification, count, and count
verification are based on the assumptions 1-6. Maximum, its verifi-
cation, and median algorithms are based on assumptions 1-8.

We assume, any DB owner or the initiator provides additive
shares of𝑚 to servers for executing PSI, and the DB owners have
only positive integers to compute the max. Since the current PSI
maximummethod uses modular operations (as will be clear in §6.3),
we cannot handle floating-point values directly. Nonetheless, we
can find the maximum for a large class of practical situations, where
the precision of decimal is limited, say 𝑘 > 0 digits by simply mul-
tiplying each number by 10𝑘 and using the current PSI maximum
algorithm. E.g., we can find the maximum over {0.5,8.2, 8.02} by
computing the maximum over {50, 820, 802}. Designing a more gen-
eral solution that does not require limited precision is non-trivial.
Parameters known to servers. Servers know following parame-
ters: (i)𝑚, 𝛿 > 𝑚, the generator 𝑔 of the cyclic (sub)group of order
𝛿 and 𝜂 ′ = 𝛼 ×𝜂 and 𝛼 > 1. Based on the group theory, 𝜂 − 1 should
be divisible by 𝛿 . Note, servers do not know 𝜂. (ii) A permutation
function PF , and recall that the same permutation function is also
known to DB owners. (iii) Two permutation functions PF 𝑠1 and
PF 𝑠2. (iv) A common pseudo-random number generator PRG
that generates random numbers between 1 and 𝛿 − 1; PRG is
unknown to DB owners. PSI, sum, and average are based on the
assumptions 1. Maximum, its verification, and median are based
on the assumptions 1,2. Count and its verification are based on the
assumptions 1,3. PSU algorithm is based on the assumptions 1,4.

5 PRIVATE SET INTERSECTION QUERY

This section, first, develops a method for finding PSI among𝑚 > 2
different DB owners on an attribute𝐴𝑐 (which is assumed to exist at
all DB owners, §5.1) and presents a result verification method (§5.2).
Later in §6.6, we present a method to execute PSI over multiple
attributes and a method to reduce the communication cost of PSI.

5.1 PSI Query Execution

High-level idea. Each of𝑚 > 2 DB owners uses a publicly known
hash function to map distinct values of 𝐴𝑐 attribute in a table of at
most |Dom(𝐴𝑐 ) | cells, where |Dom(𝐴𝑐 ) | is the size of the domain
of 𝐴𝑐 . Thus, if a value 𝑎 𝑗 ∈ 𝐴𝑐 exists at any DB owner, all DB
owners must map 𝑎 𝑗 to an identical cell of the table. All values
of the table are outsourced in the form of additive shares to two

non-communicating servers S𝜙 , 𝜙 ∈ {1, 2}, that obliviously find the
common items/intersection and return shared output vector (of the
same length as the length of the received shares from DB owners).
Finally, each DB owner adds the results to know the final answer.
Construction.We create the following construction over elements
of a group under addition and elements of a cyclic group under
multiplication. We can select any cyclic group such that 𝜂 > 𝑚.

(𝑥 + 𝑦) mod 𝛿 = 0, (𝑔𝑥 × 𝑔𝑦) mod 𝜂 = 1 (2)
Based on this construction, below, we explain PSI finding algo-

rithm:
Step 1: DB owners. Each DB owner finds distinct values in an
attribute (𝐴𝑐 , which exists at all DB owners, as per our assumption
given in §4) and executes the hash function on each value 𝑎𝑖 to
create a table 𝜒 = {𝑥1, 𝑥2, . . . , 𝑥𝑏 } of length 𝑏 = |Dom(𝐴𝑐 ) |. The
hash function maps the value 𝑎𝑖 ∈ 𝐴c to one of the cells of 𝜒 , such
that the cell of 𝜒 corresponding to the value 𝑎𝑖 holds 1; otherwise
0.1 It is important that each cell must contain only a single one
corresponding to the unique value of the attribute𝐴𝑐 , and note that
if a value 𝑎𝑖 ∈ 𝐴𝑐 exists at any DB owner, then one corresponding
to 𝑎𝑖 is placed at an identical cell of 𝜒 at the DB owner. The table at
DB 𝑗 is denoted by 𝜒 𝑗 . Finally, DB 𝑗 creates additive secret-shares
of each value of 𝜒 𝑗 (i.e., additive secret-shares of either one or zero)
and outsources the 𝜙 th, 𝜙 ∈ {1, 2}, share to the server S𝜙 . We use
the notation 𝐴(𝑥𝑖 )𝜙𝑗 to refer to 𝜙 th additive share of an 𝑖th element
of 𝜒 𝑗 ofDB 𝑗 . Recall that before the computation starts, the initiator
informs the locations of servers to DB owners and vice versa (§3.2).
Step 2: Servers. Each server S𝜙 (𝜙 ∈ {1, 2}) holds the 𝜙 th additive
share of the table 𝜒 (denoted by 𝐴(𝜒)𝜙

𝑗
) of 𝑗 th (1 ≤ 𝑗 ≤ 𝑚) DB

owners and executes Equation 3:
output

S𝜙
𝑖
← 𝑔

( (⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) ⊖𝐴(𝑚)𝜙 ) mod 𝜂 ′, (1 ≤ 𝑖 ≤ 𝑏) (3)

where ⊕ and ⊖ show the modular addition and modular subtraction
operations, respectively. We used the symbols ⊕ and ⊖ to distin-
guish them from the normal addition and subtraction. Particularly,
each server S𝜙 performs the following operations: (i) modular addi-
tion (under 𝛿) of the 𝑖th additive secret-shares from all𝑚 DB owners,
(ii) modular subtraction (under 𝛿) of the result of the previous step
from the additive share of𝑚 (i.e., 𝐴(𝑚)𝜙 ), (iii) exponentiation by 𝑔
to the power the result of the previous step and modulo by 𝜂 ′, and
(iv) sends all the computed 𝑏 results to the𝑚 DB owners.
Step 3: DB owners. From two servers, DB owners receive two vec-
tors, each of length 𝑏, and perform modular multiplication (under
𝜂) of outputs outputS1

𝑖
and output

S2
𝑖

, where 1 ≤ 𝑖 ≤ 𝑏, i.e.,
fop𝑖 ← (𝑜𝑢𝑡𝑝𝑢𝑡

S1
𝑖
× 𝑜𝑢𝑡𝑝𝑢𝑡S2

𝑖
) mod 𝜂 (4)

1We can also add any positive random number except 1 in case of 0 to prevent revealing data distri-
bution based on background knowledge; see [1] for details.



Value Share 1 Share 2
1 4 -3
0 2 -2
1 3 -2
Table 5: DB1.

Value Share 1 Share 2
1 3 -2
1 4 -3
0 3 -3
Table 6: DB2.

Value Share 1 Share 2
1 2 -1
0 3 -3
1 4 -3
Table 7: DB3.

This step results in an output array of 𝑏 elements, which may
contain any value. However, if an 𝑖th item of 𝜒 𝑗 exists at all DB
owners, then fop𝑖 must be one, since S𝜙 have added additive shares
of𝑚 ones at the 𝑖th element and subtracted from additive share of
𝑚 that results in (𝑔0 mod 𝜂 ′) mod 𝜂 = 1 at DB owner. Please see
the correctness argument below after the example.
Example 5.1.Assume three DB owners:DB1,DB2, andDB3; see
Tables 1, 2, and 3. For answering a query to find the common disease
that is treated by each hospital, DB owners create their tables 𝜒
as shown in the first column of Tables 5, 6, and 7. For example, in
Table 6, ⟨1, 1, 0⟩ corresponds to cancer, fever, and heart diseases,
where 1 means that the disease is treated by the hospital. We select
𝛿 = 5, 𝜂 = 11, and 𝜂 ′ = 143. Hence, the Abelian group under
modulo addition contains {0, 1, 2, 3, 4}, and the cyclic (sub)group
(with 𝑔 = 3) under modulo multiplication contains {1, 3, 4, 5, 9}.
Assume additive shares of𝑚 = 3 = (1 + 2) mod 5.
Step 1: DB Owners. DB owners generate additive shares as shown in
the second and third columns of Tables 5, 6, and 7, and outsource all
values of the second and third columns to S1 and S2, respectively.
Step 2: Servers. The server S1 will return the three values 27, 27, 81,
by executing the following computation, to all three DB owners:

3( ( ( (4+3+2) mod 5)−1) mod 5) mod 143 = 27
3( ( ( (2+4+3) mod 5)−1) mod 5) mod 143 = 27
3( ( ( (3+3+4) mod 5)−1) mod 5) mod 143 = 81

The server S2 will return values 9, 1, and 1 to all three DB owners:
3( ( ( (−3−2−1) mod 5)−2) mod 5) mod 143 = 9
3( ( ( (−2−3−3) mod 5)−2) mod 5) mod 143 = 1
3( ( ( (−2−3−3) mod 5)−2) mod 5) mod 143 = 1

Step 3: DB owners. The DB owner obtains a vector ⟨1, 5, 4⟩, by
executing the following computation (see below). From the vector
⟨1, 5, 4⟩, DB owners learn that cancer is a common disease treated by
all three hospitals. However, the DB owner does not learn anything
more than this; note that in the output vector, the values 5 and 4
correspond to zero. For instance, DB1, i.e., hospital 1, cannot learn
whether fever and heart diseases are treated by hospital 2, 3, or not.
(27 × 9) mod 11 = 1 (27 × 1) mod 11 = 5 (81 × 1) mod 11 = 4
Correctness.When we plug Equation 3 into Equation 4, we obtain:

fop𝑖 = (𝑔
(⊕ 𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )1𝑗 ) ⊖𝐴(𝑚)1 × 𝑔 (⊕
𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )2𝑗 ) ⊖𝐴(𝑚)2 mod 𝜂 ′) mod 𝜂

= (𝑔 (⊕
𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗−𝑚) mod 𝜂 ′) mod 𝜂
We utilize modular identity, i.e., (𝑥 mod 𝛼𝜂) mod 𝜂 = 𝑥 mod 𝜂;

thus, fop𝑖 = 𝑔
(∑𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗−𝑚) mod 𝜂. Only when
∑𝑗=𝑚

𝑗=1 (𝑥𝑖 ) 𝑗 = 𝑚,
the result of above expression is one; otherwise, a nonzero number.
Information leakage discussion. We need to prevent informa-
tion leakage at the server and at the DB owners.

(1) Server perspective. Servers only know the parameters ⟨𝑔, 𝛿, 𝜂 ′⟩ and
may utilize the relations between 𝑔 and 𝜂 to guess 𝜂 from 𝜂 ′. How-
ever, it will not give any meaningful information to servers, since
the DB owner sends the elements of 𝜒 in additive shared form, and
since servers do not communicate with each other, they cannot

obtain the cleartext values of 𝜒 . Also, an identical operation is ex-
ecuted on all shares of𝑚 DB owners. Hence, access-patterns are
hidden from servers, preventing them to distinguish between any
two values based on access-patterns. Also, the output of queries is
in shared form and contains an identical number of bits as inputs.
Thus, based on the output size, servers cannot know whether the
value is common among DB owners or not.

(2) DB owner perspective. When all DB owners do not have one at the
𝑖th position of 𝜒 , we need to inform DB owners that there is no
common value and not to reveal that how many DB owners do
not have one at the 𝑖th position. Note that the DB owner can learn
this information, if they know 𝑔 and 𝛼 , since based on these values,
they can compute what the servers have computed. However, un-
awareness of 𝑔 and 𝛼 makes it impossible to guess the number of
DB owners that do not have one at the 𝑖th position of 𝜒 . We can
formally prove it as follows:
Lemma. A DB owner cannot deduce how many other DB owners
do not have one at the 𝑖th position of 𝜒 without knowing 𝑔.
Proof. According to the precondition, 𝑔 is a generator of a
cyclic group of order 𝛿 , where 𝛿 is a prime number. Thus, C =

{𝑔0, 𝑔, 𝑔2, . . . , 𝑔𝛿−1} represents all items in the cyclic group. As-
sume that the output of Equation 4 is a number other than one,
say 𝛽 . Thus, we have 𝛽 = 𝑔𝑥−𝑚 mod 𝜂, where 𝑥 represents the
number of one at the 𝑖th position of 𝜒 𝑗 , 1 ≤ 𝑗 ≤ 𝑚. When DB
owners wish to know 𝑥 , they must compute log𝑔 𝛽 . To solve it, they
need to know 𝑔. Note that based on the characteristic of the cyclic
group, there are less than 𝛿 − 1 generators of C and co-prime to
𝛿 . Thus, 𝑔2, . . . , 𝑔𝛿−1 may also be generators of the cyclic group.
However, DB owners cannot distinguish which generator is used
by the servers. Thus, DB owners cannot deduce the value of 𝑥 ,
except knowing that 𝑥 ∈ [0,𝑚 − 1].2■

5.2 PSI Result Verification

A malicious adversary or a hardware/software bug may result in
the following situations, during computing PSI: (i) skip processing
the 𝑖th additive shares of all DB owners, (ii) replacing the result
of the 𝑖th additive shares by the computed result for 𝑗 th share, (iii)
injecting fake values, or (iv) falsifying the verificationmethod. Thus,
this section provides a method for verifying the result of PSI.
High-level idea. Let 𝑔 be a generator of a cyclic group under
modulo multiplicative 𝜂 operation, and 𝜂 ′ = 𝛼 × 𝜂, 𝛼 > 1. Thus,
(𝑔𝑥 mod 𝜂) × (𝑔−𝑥 mod 𝜂) = 1, and the idea of PSI verification lies
in this equation. Recall, in PSI (§5.1), we used (𝑔𝑥 mod 𝜂), whose
value 1 shows that the item exists at all DB owners. Now, we will
use the term (𝑔−𝑥 mod 𝜂) for verification. Specifically, if the servers
has performed their computations correctly, then Equation 5 must
hold to be true:
((𝑔 (⊕

𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 )−𝐴(𝑚)𝜙 mod 𝜂 ′) × (𝑔⊕
𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 mod 𝜂 ′)) mod 𝜂 = 1
(5)

2Consider 𝑖th , 𝑗 th , and 𝑘 th values of 𝜒1 = {1, 0, 0}, 𝜒2 = {0, 1, 0}, 𝜒3 = {1, 1, 1}. Here, after
Step 3, DB owners will learn three random numbers, such that the first two random numbers will
be identical. Based on this, DB owner can only know that the sum of 𝑖th and 𝑗 th position of 𝜒 is
identical. However, it will not reveal how many positions have 0 or 1 at 𝑖th or 𝑗 th positions.



Value Share 1 Share 2
0 2 -2
1 0 1
0 1 -1
Table 8: DB1.

Value Share 1 Share 2
0 2 -2
0 3 -3
1 4 -3
Table 9: DB2.

Value Share 1 Share 2
0 4 -4
1 1 0
0 1 -1
Table 10: DB3.

where𝑚 is the number of DB owners, 𝑥 𝑗 is either 1 or 0 (as described
in §5.1), and 𝑥 𝑗 is the complement value of 𝑥 𝑗 . Below, we describe
the steps executed at the servers and DB owners.
Step 1: DB owners. On distinct values of an attribute 𝐴c of their
relations, DB 𝑗 executes a hash function to create the table 𝜒 𝑗 that
contains 𝑏 = |Dom(𝐴𝑐 ) | values (either 0 or 1). Also, DB 𝑗 creates a
table 𝜒 𝑗 containing 𝑏 values, such that 𝑖th value of 𝜒 𝑗 must be the
complement of 𝑖th value of 𝜒 𝑗 . Then, DB 𝑗 permutes the values of
𝜒 𝑗 using a permutation function PF𝑑𝑏1 (known to all DB owners
only) and creates additive shares of each value of 𝜒 𝑗 and 𝜒 𝑗 , prior to
outsourcing to servers. Reason of using PF𝑑𝑏1 will be clear soon.
Step 2: Servers. Each server S𝜙 holds the 𝜙 th additive share of
𝜒 (denoted by 𝐴(𝜒)𝜙

𝑗
) and 𝜒 (denoted by 𝐴(𝜒)𝜙

𝑗
) of 𝑗 th DB owner

and executes the following operation:
output

S𝜙
𝑖
← 𝑔

( (⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) ⊖𝐴(𝑚)𝜙 ) mod 𝜂 ′, (1 ≤ 𝑖 ≤ 𝑏) (6)

Vout

S𝜙
𝑖
← 𝑔

( (⊕ 𝑗=𝑚
𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 )) mod 𝜂 ′, (1 ≤ 𝑖 ≤ 𝑏) (7)

Equation 6 is identical to Equation 3 (in §5.1) and finds the com-
mon item at the server. In Equation 7, each server S𝜙 performs
following operations: (i) modular addition (under 𝛿) of the 𝑖th addi-
tive shares of 𝜒 from𝑚 DB owners, (ii) exponentiation by 𝑔 to the
power the result of previous step, under modulo 𝜂 ′; and (iii) sends
computed results outputS𝜙 [] and Vout

S𝜙 [] to DB owners.
Step 3: DB owners. From two servers, DB owners receive
output

S𝜙 [] and Vout
S𝜙 [] (each of length 𝑏), permute back the val-

ues of VoutS𝜙 [] (using the reverse permutation function, since they
used PF𝑑𝑏1 on 𝜒 , which results in Vout

S𝜙 [] at servers) to obtain
pvout

S𝜙 [], and execute the following:
𝑟1 ← output

S1
𝑖
× outputS2

𝑖
mod 𝜂 (8)

𝑟2 ← pvout
S1
𝑖
× pvoutS2

𝑖
mod 𝜂 (9)

𝑟1 × 𝑟2 mod 𝜂 ? 1 (10)
If the DB owner finds the output of 𝑟1×𝑟2 equals one for all 𝑏 values,
it shows that the servers executed the computation correctly.
Example 5.2.1. We verify PSI results of Example 5.1.1. Suppose
𝛿 = 5, 𝜂 = 11, and 𝜂 ′ = 143, as assumed in Example 5.1.1.
Step 1: DB owners. DB owners find the reverse of 𝜒 (as shown in
the first column of Tables 8, 9, and 10) and generate additive shares;
see the second and third columns of Tables 8, 9, and 10. Note that
here for simplicity, we do not permute the values or shares.
Step 2: Servers. The server S1 will return the three values 27, 81, 3,
by executing the following computation, to all three DB owners:

3( (2+2+4) mod 5) mod 143 = 27
3( (0+3+1) mod 5) mod 143 = 81
3( (1+4+1) mod 5) mod 143 = 3

S2 will return three values 7, 27, and 1 to all three DB owners:
3( (−2−2−4) mod 5) mod 143 = 9
3( (1−3+0) mod 5) mod 143 = 27
3( (−1−3−1) mod 5) mod 143 = 1

Step 3: DB owners. The DB owner obtains a vector ⟨1, 9, 8⟩, by
executing the following computation:

(27 × 9) mod 11 = 1 (81 × 27) mod 11 = 9 (3 × 1) mod 11 = 3
Now, the DB owner executes the following to verify PSI results:

1 × 1 mod 11 = 1, 5 × 9 mod 11 = 1, and 4 × 3 mod 11 = 1, where 1,
5, 4 are final outputs at DB owner in Example 5.1.1. The output 1
indicates that servers executed the computation correctly. ■
Correctness. First, we need to argue that the processing at servers
works correctly. Assume that the DB owner does not implement
PF𝑑𝑏1 on elements of 𝜒 , and computation at servers is executed
in cleartext. Thus, on the values of 𝜒 , servers add 𝑖th value of each
𝜒 𝑗 = {𝑥𝑖 } (1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑏) and subtract the results from𝑚.
It will result in a number, say 𝑎 ∈ {−𝑚 + 1, 0}. On the other hand,
servers add 𝑖th values 𝜒 𝑗 , and it will result in a number, say 𝑏 ∈
{0,𝑚}, i.e., the number of ones at DB owners at the 𝑖th position of 𝜒 .
To hide the value of 𝑎 and 𝑏 from servers, they execute operations
on additive shares of 𝜒 and 𝜒 , and take a modulus exponent (i.e.,
𝑟1 ← 𝑔𝑎 and 𝑟2 ← 𝑔𝑏 ) to hide 𝑎 and 𝑏 from DB owners. Since
𝑎 = −𝑏 or 𝑎 = 𝑏 = 0, 𝑟1 × 𝑟2 mod 𝜂 = 1, and this shows that the
server executed the correct operation.

Now, we showwhy the verificationmethodwill detect any abnor-
mal computation executed by servers. Note that servers may skip
processing all/some values of 𝜒 and 𝜒 . For example, servers may
process only 𝑥1 ∈ 𝜒 , 𝑥1 ∈ 𝜒 , and send the results corresponding to
𝑥1, 𝑥1 as the results of all remaining 𝑏 − 1 values. Such a malicious
operation of servers will provide legal proof (i.e., 𝑟1 × 𝑟2 mod 𝜂 = 1)
at DB owners that servers executed the computation correctly,
(since values of 𝜒 was not permuted). Thus, we used permutation
over the values of 𝜒 and/or additive shares of 𝜒 . Now, to break the
verification method and to produce 𝑟1 × 𝑟2 mod 𝜂 = 1 for an 𝑖th

value of 𝜒 , servers need to find the correct value in 𝜒 corresponding
to an 𝑖th value of 𝜒 (among the randomly permuted shares). Hence,
the removal of any results from the output will be detected.

Now, we show that the verification method can detect fake data
insertion by servers. For a server S1 to successfully inject a fake tu-
ple (i.e., undetected during verification), it should know the correct
position of some element in both 𝐴(𝜒)1

𝑗
and 𝐴(𝜒)1

𝑗
. Since 𝐴(𝜒)1

𝑗
is

a permuted vector of size 𝑏 = |Dom(𝐴𝑐 ) |, the probability of finding
the correct element in𝐴(𝜒)1

𝑗
corresponding to an element of𝐴(𝜒)1

𝑗

will be 1/𝑏2. E.g., in our experiments, the domain size is 5M (or
20M) values, making the above probability infinitesimal (< 10−13).3

Additional security. We implemented PF
db1

on the elements
of 𝜒 . We can, further, permute additive shares of both 𝜒 and 𝜒

using different permutation functions, to make it impossible for
both servers to find the position of a value in 𝐴(𝜒)𝜙

𝑗
and 𝐴(𝜒)𝜙

𝑗
,

𝜙 ∈ {1, 2}. Thus, servers cannot break the verification method, and
any malicious activities will be detected by DB owners.
Information leakages discussion. The verification method will
not reveal any non-desired information to servers/DB owners, and
arguments follow the similar way as for PSI computation in §5.1.

6 AGGREGATION OPERATION OVER PSI

Prism supports both summary and exemplar aggregations. Below,
we describe how Prism implements sum §6.1, average §6.2, max-
imum §6.3, median §6.4 and count operations §6.5. Also, in our
3If the domain size is small, we can increase its size by adding fake values to bind the probability of
adversary being able to inject fake data.



discussion below, we consider set-based operation PSI on a sin-
gle attribute 𝐴𝑐 . §6.6 extends the discussions to support PSI over
multiple attributes and over a large-size domain. Correctness and
information leakage discussion of the following methods with their

verification approaches are given in the full version [1].

6.1 PSI Sum Query

A PSI sum query computes the sum of values over an attribute
corresponding to common items in another attribute; see example
given in §2. This section develops a method based on additive, as
well as, multiplicative shares, where additive shares find common
items over an attribute 𝐴𝑐 and multiplicative shares (SSS) finds the
sum of shares of an attribute 𝐴𝑥 corresponding to the common
items in 𝐴𝑐 . This method contains the following steps:
Step 1: DB owners. DB 𝑗 creates their 𝜒 𝑗 table over the distinct
values of 𝐴𝑐 attribute by following Step 1 of PSI (§5). Here, 𝜒 𝑗 =
{⟨𝑥𝑖1, 𝑥𝑖2⟩} (1 ≤ 𝑖 ≤ 𝑏 and 𝑏 = |Dom(𝐴𝑐 ) |), i.e., the 𝑖th cell of 𝜒 𝑗
contains a pair of values, ⟨𝑥𝑖1, 𝑥𝑖2⟩, where (i) 𝑥𝑖1 = 1, if a value
𝑎𝑖 ∈ 𝐴𝑐 is mapped to the 𝑖th cell, otherwise, 0; and (ii) 𝑥𝑖2 contains
the sum of values of 𝐴𝑥 attribute corresponding to 𝑎𝑖 ; otherwise,
0. DB 𝑗 creates additive shares of 𝑥𝑖1 (denoted by 𝐴(𝑥𝑖1)𝜙𝑗 , 𝜙 =

{1, 2}) and sends to servers S1 and S2. DB 𝑗 also creates SSS of 𝑥𝑖2
(denoted by 𝑆 (𝑥𝑖2)𝜙={1,2,3}) and sends to servers S1, S2, and S3.
Step 2: Servers. Servers S1 and S2 find common items using ad-
ditive shares by implementing Equation 3 and send all computed
𝑏 results to all DB owners. Since the result is in additive shared
form, it cannot be multiplied to SSS. Thus, servers send the output
of PSI to one of the DB owners selected randomly and wait to receive
multiplicative shares corresponding to common items. The reason
of randomly selecting only one DB owner is just to reduce the com-
munication overhead of sending/receiving additive/multiplicative
shares, and it does not impact the security. Note that all DB owners
can receive the PSI outputs and generate multiplicative shares.
Step 3: DB owners. On receiving 𝑏 values, the DB owner finds
the common items by executing Equation 4 and generates a vector
of length 𝑏 having 1 or 0 only, where 0 is obtained by replacing
random values of fop. Finally, DB owner creates three SSS of each 𝑏
values, denoted by 𝑆 (𝑧𝑖 )𝜙 , 𝜙 = {1, 2, 3}, and sends to three servers.
Step 4: Servers. Servers S𝜙 , 𝜙 = {1, 2, 3}, execute the following:

sum

S𝜙
𝑖
← ∑𝑗=𝑚

𝑗=1 𝑆 (𝑥𝑖2)𝜙𝑗 × 𝑆 (𝑧𝑖 )
𝜙 , 1 ≤ 𝑖 ≤ 𝑏 (11)

Each server multiplies 𝑆 (𝑧𝑖 )𝜙 by 𝑆 (𝑥𝑖2)𝜙𝑗 of each DB owner, adds
the results, and sends them to all DB owners.
Step 5: DB owners. From three servers, DB owners receive three
vectors, each of length 𝑏, and perform Lagrange interpolation on
each 𝑖th value of the three vectors to obtain the final sum of the
value in 𝐴𝑥 corresponding to the common items in 𝐴𝑐 .

6.2 PSI Average Query

A PSI average query on cost column corresponding to the common
disease in Tables 1-3 returns {Cancer, 280}. PSI average query
works in a similar way as PSI sum query. In short, DB 𝑗 creates
𝜒 𝑗 = {⟨𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3⟩} (1 ≤ 𝑖 ≤ 𝑏, 𝑏 = |Dom(𝐴𝑐 ) |), and 𝑥𝑖1, 𝑥𝑖2 are
identical to the values we created in Step 1 of PSI sum (§6.1). The
new value 𝑥𝑖3 contains the number of tuples atDB 𝑗 corresponding

to𝑥𝑖1. E.g., in case of Table 1, one of the values of 𝜒1 will be {⟨Cancer,
300, 2⟩}, i.e., Table 1 has two tuples corresponding to Cancer and
cost 300. All values 𝑥𝑖3 are outsourced in multiplicative share form.
Then, we follow Steps 2 and 3 of PSI sum. In Step 4, servers multiply
the received 𝑖th SSS values corresponding to the common value to
𝑥𝑖2, 𝑥𝑖3 and add the values. Finally, in Step 5, DB owners interpolate
vectors corresponding to all 𝑏 values of 𝑥𝑖2, 𝑥𝑖3 and find the average
by dividing the values appropriately.

6.3 PSI Maximum Query

This section develops amethod for finding themaximum value in an
attribute 𝐴𝑥 corresponding to the common values in 𝐴𝑐 attribute;
refer to §2 for PSI maximum example. Here, our objective is to
prevent the adversarial server from learning: (i) the actualmaximum
values outsourced by each DB owner, (ii) what is the maximum
value among DB owners and which DB owners have the maximum
value. We allow all the DB owners to know the maximum value
and/or the identity of the DB owner(s) having the maximum value.
We use pink color to highlight the part that is used to reveal the
identity of DB owners having maximum to distinguish which part
of the algorithm can be avoided based on the security requirements.

In this method, each DB owner uses polynomial F(𝒙) given
by the initiator (see §4 to find how we created F (𝑥)). We use F (𝑥)
to generate values at different DB owners in an order-preserving
manner by executing the following Step 3 and Equation 12.

The method contains at most three rounds, where the first round
finds the common values in an attribute 𝐴𝑐 by using Steps 1-3,
the second round finds the maximum value in an attribute 𝐴𝑥

corresponding to common items in 𝐴𝑐 using Steps 4-5a, the last
round finds DB owners who have the maximum value using Steps
5b-7. Note that the third round is not always required, if (i) we
do not want to reveal identity of the DB owner having themaximum
value, or (ii) values in 𝐴𝑥 column across all DB owners are unique.
Step 1 at DB owner and Step 2 at servers. These two steps are
identical to Step 1 and Step 2 of PSI query execution method (§5).
Step 3: DB owner. On the received outputs (of Step 2) from
servers, DB owners find the common item in the attribute 𝐴𝑐 , as
in Step 3 of PSI query execution method (§5). Now, to find the
maximum value in the attribute 𝐴x corresponding to the common
item in 𝐴𝑐 , DB owners proceeds as follows:

For simplicity, we assume that there is only one common item,
say 𝑦th item. DB𝑖 finds the maximum, sayM𝑖𝑦 , in the attribute
𝐴x of their relation corresponding to the common item 𝑦. Note that
since we assume only one common element, we refer to the maxi-
mum elementM𝑖𝑦 byM𝑖 . DB𝑖 executes Equation 12 to produce
values at DB owners in an order-preserving manner:

𝑣𝑖 ← F (M𝑖 ) + 𝑟𝑖 (12)
DB𝑖 implements the polynomial F () onM𝑖 and adds a random
number 𝑟𝑖 (selected in a range between 0 andM𝑚

𝑖
), and it produces

a value 𝑣𝑖 . Finally, DB𝑖 creates additive shares of 𝑣𝑖 (denoted by
𝐴(𝑣)𝜙

𝑖
) and sends them to servers S𝜙 , 𝜙 = {1, 2}. Note that even

if 𝑘 ≥ 2 DB owners have the same maximum valueM𝑖 , by this
step, the value 𝑣 will be different at those DB owners, with a high
probability, 1 − 1

(M𝑖 ) (𝑘−1)𝑚
, (depending on the range of 𝑟𝑖 ). Also, if

any two numbersM𝑖 <M 𝑗 , thenF (M𝑖 ) + 𝑟𝑖 < F (M 𝑗 ) will hold.



Step 4: Servers. Each server S𝜙 executes the following operation:
input

S𝜙 [𝑖] ← 𝐴(𝑣)𝜙
𝑖
, 1 ≤ 𝑖 ≤ 𝑚; outputS𝜙 [] ← PF (inputS𝜙 [])

S𝜙 collects additive shares from each DB owner and places them in
an array (denoted by inputS𝜙 []), on which S𝜙 executes the permu-
tation function PF . Then, S𝜙 sends the output the permutation
function output

S𝜙 [] to the announcer S𝑎 that does the following:
foutput

S𝑎 [𝑖] ← output
S1 [𝑖] + outputS2 [𝑖], 1 ≤ 𝑖 ≤ 𝑚 (13)

max, index ← FindMax (foutputS𝑎 []) (14)
S𝑎 adds the 𝑖th outputs received from S1 and S2, and compares
all those numbers to find the maximum number (denoted by max).
Also,S𝑎 produces the index position (denoted by index) correspond-
ing to the maximum number in foutput

S𝑎 []. Finally, S𝑎 creates
additive secret-shares of max (denoted by 𝐴(max

S𝜙 ), 𝜙 ∈ {1, 2}),
as well as, of index (denoted by𝐴(index)S𝜙 ), and sends them to S𝜙
that forwards such additive shares to DB owners. Note, if the proto-
col does not require to reveal the identity of the DB owner having
the maximum value, S𝑎 does not send additive shares of index.
Step 5a: DB owner. Now, the DB owners’ task is to find the max-
imum value and/or the identity of the DB owner who has the
maximum value. To do so, each DB owner performs the following:

max← 𝐴(max)S1 +𝐴(max)S2 (15)
index← 𝐴(index)S1 +𝐴(index)S2 , pos← RPF (index) (16)

The DB owner finds the identity of the DB owner having the max
value by adding the additive shares and by implementing reverse
permutation function RPF . (RPF works since PF is known to
DB owners and servers; see Assumptions given in §4). To find the
max value, they implement F (𝑧) and F (𝑧+1) and evaluate F (𝑧) ≤
max < F (𝑧 + 1), where 𝑧 ∈ {1, 2, . . .}.4 If this condition holds to be
true, then 𝑧 is the max value, and if 𝑧 =M𝑖 , then DB𝑖 knows that
he/she holds the max value. Obviously, if DB𝑖 does not hold the
max value, thenM𝑖 < F (M𝑖 ) + 𝑟𝑖 < F (M𝑖 + 1) ≤ F (𝑧) ≤ max.
Step 5b: DB owner. By the end of Step 5a, the DB owners know
the max value and the identity of the DB owner having the same
max value, due to pos. But, if there are more than one DB owners
having the max value, the other DB owners cannot learn about it.
The reason is: the server S𝑎 can find only the max value, while,
recall that, if more than one DB owners have the same max value,
sayM, they produce a different value, due to using different random
numbers in Step 3 (Equation 12). Thus, we need to execute this step
5b to know all DB owners having the max value. After comparing
its max values against max, DB𝑖 knows whether it possesses the
maxi value or not. Depending on this,DB𝑖 generates a value 𝛼𝑖 = 0
or 𝛼𝑖 = 1, creates additive shares of 𝛼𝑖 , and sends to S𝜙 , 𝜙 ∈ {1, 2}.
Step 6: Servers. Server S𝜙 allocates the received additive shares
to a vector, denoted by fpos, and sends the vector fpos to all DB
owners, i.e., fposS𝜙 [𝑖] ← 𝐴(𝛼)S𝜙

𝑖
, 1 ≤ 𝑖 ≤ 𝑚.

Step 7: DB owner. Each DB owner adds the received additive
shares to obtain the vector fpos[].

fpos[𝑖] ← fpos
S1 [𝑖] + fposS2 [𝑖], 1 ≤ 𝑖 ≤ 𝑚 (17)

By fpos[], DB owners discover which DB owners have the max-
imum value, since, recall that in Step 5, DB𝑖 that satisfies the
4To reduce the computation cost, we can select number 𝑧 using binary search method.

condition (F (M𝑖 ) ≤ max < F (M𝑖 + 1)) requests S𝜙 to place
additive share of 1 at fposS𝜙 [𝑖].
Example 6.3.1. Refer to Tables 1-3, and consider that all hospitals
wish to find the maximum age of a patient corresponding to the
common disease and which hospitals treat such patients. Assume
𝜂 = 5003 and that all hospitals know cancer as the common disease.

In Step 3, all hospitals, i.e., DB owners, find their maximum
values in the attribute Age corresponding to common disease and
implement F (𝑥) = 𝑥4 + 𝑥3 + 𝑥2 + 𝑥 + 1, sent by the initiator.

F (6) = 1555 + 216 = 1771 = (5000 − 3229) mod 5003
F (8) = 4681 + 1 = 4682 = (5500 − 818) mod 5003
F (8) = 4681 + 319 = 5000 = (2500 + 2500) mod 5003

Further, they add random numbers (216, 1, 319) and create ad-
ditive shares, which are outsourced to S1 and S2. In Step 4, S1
holds ⟨5000, 5500, 2500⟩, permutes them, and sends to S𝑎 . S2 holds
⟨−3229,−818, 2500⟩, permutes them, and sends to S𝑎 .
S𝑎 obtains ⟨4682, 5000, 1771⟩ by adding the received shares from

S1, S2, and finds 5000 as the max value and ‘Hospital 2’ to which
this value belongs. Finally, S𝑎 creates additive shares of 5000 =

(4000 + 1000) mod 5003, additive shares of the identity of the DB
owner: 2 = (200 − 198) mod 5003, and sends to DB owners via S𝜙 .

In Step 5a, all hospitals will know the maximum value as 5000
(with random value added) and identity of the DB owner as 2 on
which they implement the reverse permutation function to obtain
the correct identity as ‘Hospital 3’. Then, ‘Hospital 1’ knows that
they do not hold the maximum, since F (6) + 216 < F (7) < 5000.
‘Hospital 2’ knows that they hold the maximum, since F (8) <

5000 < F (9). Also, ‘Hospital 3’ knows that they hold the maximum.
To know which hospitals have the maximum value, in Step 5b,
Hospitals 1, 2, 3’ create additive shares of 0, 1, 1, respectively, as:
0 = (200 − 200) mod 5003, 1 = (300 − 299) mod 5003, and 1 =

(200− 199) mod 5003, and send to S1 and S2. Finally, in Step 6, S1
and S2 send ⟨200, 300, 200⟩ and ⟨−200,−299,−199⟩ to all hospitals.
In Step 7, hospitals add received shares, resulting in ⟨0, 1, 1⟩. It
shows that ‘Hospitals 2, 3’ have the maximum value 8. ■

6.4 PSI Median Query

A PSI median query over cost column corresponding to disease
column over Tables 1-3 returns {⟨Cancer, 300⟩} (here, we first
added the cost of treatment per disease at each DB owner). For
PSI median, we extend the method of finding max by executing
all steps as specified in §6.3 with an additional process in Step 2.
Particularly, S𝑎 in Step 2 of §6.3 after adding shares, sorts them,
and finds the median value. If number of DB owners is odd (even),
then S𝑎 finds the middle (two middle) values in the sorted shares.

6.5 PSI Count Query

We extend PSI method (§5) to only reveal the count of common
items among DB owners (i.e., the cardinality of the common item),
instead of revealing common items. Recall that servers S𝜙 know
a permutation function PF 𝑠1 that is not known to DB owners.
The idea behind this is to find the common items over 𝜒 and to
permute the final output at servers before sending the vector (of
additive share form) to DB owners. Thus, when DB owners per-
form computation on the vector received from servers to know
the final output, the position of one in the vector will not reveal



B21

11001000 00000000

1 1 0 0

0

B22
B23 B24

B31

1 1 0 0Level 2

Level 1

Level 3

𝟏
𝟐

𝟏
𝟏
0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

Figure 2: Bucket tree for 16 values.

common items, while the count of one will reveal the cardinality
of the common items. Thus, PSI count method follows all steps of
PSI as described in §5.1 with an addition of permutation function
execution by servers before sending the output to DB owners.

6.6 Extending PSI over Multiple Attributes

In the previous sections, we explained PSI over a single attribute (or
a set). We can trivially extend it to multiple attributes (or multisets).
Particularly, such a query can be express in SQL as follows:

SELECT 𝐴𝑐 , 𝐴𝑥 FROM 𝑑𝑏1 INTERSECT . . . INTERSECT SELECT 𝐴𝑐 , 𝐴𝑥 FROM db𝑚

Recall that in PSI findingmethod §5.1,DB 𝑗 sends additive shares
of a table 𝜒 𝑗 of length 𝑏 = |Dom(𝐴𝑐 ) |, where 𝐴𝑐 was the attributes
on which we executed PSI. Now, we can extend this method by
creating a table 𝜒 𝑗 of length 𝑏 = |Π𝑖>0Dom(𝐴𝑖 ) |, where 𝐴𝑖 are
attributes on which wewant to execute PSI. However, as the domain
size and the number of attributes increase, such a method incurs
the communication overhead. Thus, to apply the PSI method over a
large (and real) domain size, as well as, to reduce the communication
overhead, we provide a method, named as bucketization-based PSI.
Optimization: bucketization-based PSI. Before going to steps
of this method, let us consider the following example:
Example 6.6.1. Consider two attributes 𝐴 with |Dom(𝐴) | = 8 and
𝐵 with |Dom(𝐵) | = 2. Thus, DB owners can create 𝜒 𝑗 of 16 cells.
Assume that there are two DB owners: DB1 with 𝜒1 whose only
positions 4, 7, 8 have one; and DB2 with 𝜒2 whose only positions
1, 6, 8 have one. Thus, each DB owner sends/receives a vector of
length 16 from each server. Now, to reduce communication, we
create buckets over the cell of 𝜒 and build a tree, called bucket-tree,
of depth log𝜅 |𝜒 |, where 𝜅 is the number of the maximum number
of child nodes that a node can have. Bucket-tree in created in a
bottom-up manner, by non-overlap grouping of 𝜅 nodes. For each
level of bucket-tree a hash table is created (similar to 𝜒). Notation 𝜒𝑖

𝑗

denotes this table for 𝑖th level of bucket-tree atDB 𝑗 , and 𝜒𝑖
𝑗
[𝑘] = 1,

if 𝑘 th node at the 𝑖th level has 1.
Figure 2 shows bucket-tree for DB 𝑗 , |𝜒 | = 16, and 𝜅 = 4, with

appropriate one and zero in 𝜒𝑖1. Note that the second level shows
four nodes 𝐵21, 𝐵22, 𝐵23, 𝐵24 corresponding to 1 − 4, 5 − 8, 9 − 12,
and 13 − 16. Since DB1 has one at 4, 7, 8 leaf nodes, we obtain
𝜒21 = ⟨1, 1, 0, 0⟩, i.e., 𝐵21 = 1, 𝐵22 = 1, 𝐵23 = 0, 𝐵24 = 0. Here,
𝐵21 = 1, since one of its child nodes has one. Now, when computing
PSI, DB 𝑗 starts the computation shown in Step 2 of §5.1 over the
specified 𝑖th levels’ 𝜒𝑖

𝑗
. The computation is continued only for the

child nodes, whose parent nodes resulted in one in Step 3 of §5.1.
For example, in Figure 2, DB 𝑗 can execute PSI for 𝜒2

𝑗
and know

that the only desired bucket nodes are 𝐵21 and 𝐵22 that contain
common items. Thus, in the next round, they execute PSI over
the first eight items of 𝜒1

𝑗
, i.e., child nodes of 𝐵21 and 𝐵22. Hence,

while we use two communication rounds, DB owners/servers send
4+8=12 numbers instead of 16 numbers. ■

Bucketization-based PSI has the following steps:
Step 1a: DB owner. Build the tree as specified in Example 6.6.1.
Step 1b: DB owner. Outsource additive shares of 𝑖th level’s 𝜒𝑖

𝑗
.

Step 2: Servers. Servers compute PSI using Step 2 of §5.1 over 𝜒𝑖
𝑗

(1 ≤ 𝑗 ≤ 𝑚) and provide answers to DB owners.
Step 3: DB owner. DB 𝑗 computes results to find the common
items in 𝜒𝑖

𝑗
and discards all non-common values of 𝜒𝑖

𝑗
and their

child nodes. DB 𝑗 requests servers to execute the above Step 2 for
𝜒𝑖−1
𝑗

that has values corresponding to all non-discarded nodes of
(𝑖 − 1)th level node. Note: The role of DB owners in traversing the
tree (i.e., the above Step 3) can be eliminated by involving S𝑎 .
Open problem. In bucketization, we perform PSI at layers of the
tree to eliminate ranges where corresponding child nodes have
zero. However, if the data is dense (i.e., data covers most of the
domain values), then bucketization-based PSI may incur overhead,
since all nodes in the tree may correspond to one, leading to PSI
execution on all those nodes including leaf nodes. In contrast, if
the data is sparse (i.e., the domain is much larger than the data, as
is the case of the domain to be a cartesian product of domains of
two or more attributes), then higher-level nodes in the tree may
have 0, leading to eliminate ranges of the domain on which PSI
is performed. Developing an optimal bucketization strategy that
minimizes PSI execution is an interesting open problem.

7 PRIVATE SET UNION (PSU) QUERY

This section develops a method for finding the union of values
among𝑚 > 1 different DB owners over an attribute 𝐴𝑐 .
High-level idea. Likewise PSI method (as given in §5), each DB
owner uses a publicly known hash function tomap distinct values of
𝐴𝑐 attribute in a table of cells at most |Dom(𝐴𝑐 ) |, where |Dom(𝐴𝑐 ) |
refers to the size of the domain of 𝐴𝑐 , and outsources each element
of the table in additive share form to two servers S𝜙 , 𝜙 ∈ {1, 2}. S𝜙
computes the union obliviously, thereby DB owners will receive a
vector of length |Dom(𝐴𝑐 ) | having either 0 or 1 of additive shared
form. After adding the share for an 𝑖th element, DB owners only
know whether the element is in the union or not; nothing else.
Step 1: DB owner. This step is identical to Step 1 of PSI (§5.1).
Step 2: Server. Server S𝜙 holds the 𝜙 th additive share of the table
𝜒 of𝑚 DB owners and executes the following operation:

rand [] ← PRG(seed)

output

S𝜙
𝑖
← ((∑𝑗=𝑚

𝑗=1 𝐴(𝑥𝑖 )𝜙𝑗 ) × rand [𝑖]) mod 𝛿
(18)

Server S𝜙 : (i) generates 𝑏 pseudorandom numbers that are between
1 and 𝛿 − 1, (ii) performs (arithmetic) addition of the 𝑖th additive
secret-shares from all DB owners, (iii) multiplies the resultant of
the previous step with 𝑖th pseudorandom number and then takes
modulo, and (iv) sends 𝑏 results to all DB owners.
Step 3: DB owner. On receiving two vectors, each of length 𝑏,
from two servers, DB owners execute modular addition over 𝑖th
shares of both vectors to get the final answer (Equation 19). It
results in either zero or a random number, where zero shows that
𝑖th element of 𝜒 is not present at any DB owner, while a random
number shows 𝑖th element of 𝜒 is present at one of the DB owners.

fop𝑖 ← (output
S1
𝑖
+ outputS2

𝑖
) mod 𝛿 (19)
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Figure 3: Exp 1. Prism performance on multi-threaded im-

plementation at AWS.

Real data column For verification Average
OK PK LN SK DT vOK vPK vLN vSK vDT aOK

Table 11: Table structure created by Prism.

8 EXPERIMENTAL EVALUATION

This section evaluates the scalability of Prism on different-sized
datasets and a different number of DB owners. Also, we compare
Prism against other MPC-based systems. We used a 16GB RAM
machine with 4 cores for each of the DB owners and three AWS
servers of 32GB RAM, 3.5GHz Intel Xeon CPU with 16 cores to
store shares. Communication between DB owners and servers were
done using the scp protocol, and 𝜂, 𝛿 were 227, 113, respectively.

8.1 Prism Evaluation

Dataset generation. We used five columns (Orderkey (OK),
Partkey (PK), Linenumber (LN), Suppkey(SK), and Discount (DT))
of LineItem table of TPC-H benchmark. We experimented with
domain sizes (i.e., the number of values) of 5M and 20M for the OK
column on which we executed PSI and PSU. Further, we selected at
most 50 DB owners. To our knowledge, this is the first such experi-
ment of multi-owner large datasets. OK column is used for PSI/PSU,
and other columns were used for aggregation operations. To gener-
ate secret-shared dataset, each DB owner maintained a LineItem
table containing at most 5M (20M) OK values. To outsource the
database, each DB owner did the following:

(1) Created a table of 11 columns, as shown in Table 11, in which the
first five columns contain the secret-shared data of LineItem table,
the next five columns contain the corresponding verification data,
and the last column (aOK) was used for computing the average. All
verification column names are prefixed with the character ‘v.’

(2) First column of Table 11 was created over OK column of LineItem
table (using Step 1 of §5.1) for executing PSI/PSU over OK. vOK
column was created to verify PSI results (using Step 1 of §5.2).

(3) Columns PK and vPK were created using the following command:
select OK, sum(PK) from LineItem group by OK. Other
columns ⟨LN, SK, DT, vLN, vSK, vDT⟩ were created by using similar
SQL commands. Column aOK was created using the following
command: select count(*) from LineItem group by OK.

(4) Finally, permuted all values of all verification columns and create
additive shares of ⟨OK and vOK⟩, as well as, multiplicative shares
of all remaining columns.
Share generation time. The time to generate two additive shares
and three multiplicative shares of the respective first five columns
of Table 11 in the case of 5M (or 20M) OK domain size was 121s (or
548s). The time for creating each additional column for verification
took 20s (or 90s) in the case of 5M (or 20M) domain values.
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Figure 4: Exp 2. Prism dealing with multiple DB owners.

Exp 1. Prism performance on multi-threaded implementa-

tion at AWS. Since identical computations are executed on each
row of the table, we exploit multiple CPU cores by writing Prism’s
the parallel implementation that divides rows into multiple blocks
with each thread processing a single block. We increased the num-
ber of threads from 1 to 5; see Figure 3, while fixing DB owners
to 10. Increasing threads more than 5 did not provide speed-up,
since reading/writing of data quickly becomes the bottleneck as
the number of threads increase. Observe that the data fetch time
from the database remains (almost) identical; see Figure 3.
PSI and PSU queries. Figure 3 shows the time taken by PSI/PSU over
OK column. Observe that as the number of values in OK column
increases (from 5M to 20M), the time increases (almost) linearly
from 4s to 18s, respectively.
Aggregation queries over PSI. We executed PSI count, average, sum,
maximum, and median queries; see Figure 3. Observe that the pro-
cessing time of PSI count is almost the same as that of PSI, since
it involves only one round of computation in which we permute
the output of PSI. In contrast, other aggregation operations (sum,
average, maximum, and median) incur almost twice processing cost
at servers, since they involve computing PSI over OK column in the
first round and, then, computing aggregation in the second round.
For this experiment, we computed the sum only over DT column
and maximum/median over PK column. Table 12 shows the impact
of computing sum and maximum over multiple attributes (from 1
to 4). As we increase the number of attributes, the computation of
respective aggregation operations also increases, due to additional
addition/multiplication/modulo operations on additional attributes.

Data size
Sum over different attributes Max over different attributes

1 2 3 4 1 2 3 4

5M 8.2 12.1 15.9 20.4 10 14.6 19 23.5
20M 33.4 48.6 63.5 81.9 36.6 53.3 70 87.4

Table 12: Exp 1. Multi-column aggregation query perfor-

mance (time in seconds).

Exp 2. Impact of the number of DB owners. Prism deals with
multiple DB owners; thus, we investigated the impact of DB owners
by selecting 10, 20, 30, 40, 50 DB owners, for two different domain
sizes of OK column. Figure 4 shows the server processing time
for PSI, PSU, and aggregation over PSI. Observe that as the num-
ber of DB owners increases, the computation time at the server
increases linearly, due to the linearly increasing number of addi-
tion/multiplication/modulo operations; e.g., on 5M OK values, PSI
processing took 4.2s, 8.6s, 12.5s, 16.2s, and 20s in the case of 10, 20,
30, 40, 50 DB owners.



Papers [39] & [45] [51] [3] [2] [37] [38] Jana [5]† SMCQL [6] Sharemind [8] Conclave [54]‡ Prism

Operations supported PSI PSI PSI PSI PSI PSI PSI, PSU,
aggregation

PSI via join &
aggregation

PSI via join &
aggregation

PSI via join &
aggregation

PSI, PSU, ag-

gregation

Verification Support × × × ✓ ✓ × × × × × ✓
Scalability based on experi-

ments reported (dataset size &

time)

N/A 32768
(≈50m)

1 million
(≈2 h)

32768
(≈16m)

1 billion
(≈10 m)

1000
(≈9m)

1 million
(≈1 h)

>23 million
(≈23 h)

30000 (>2 h) 4 million (8
m)

20 million

(At most 8 s)

Communication among servers N/A N/A N/A N/A N/A N/A Yes ∗ Yes ∗ Yes ∗ Yes ∗ No

Computational Complexity O(𝑛𝑚 ) O (𝛼𝑚𝑛) O (𝑛𝑚 ) O (𝑚𝑛2) O (𝑚𝑛) ‡‡ O(𝑛𝑚 ) O (𝑛𝑚 ) N/A ∗ O(𝑛𝑚 ) N/A ∗ O(𝒎𝑿)

Table 13: Comparison of existing cloud-based techniques against Prism. Notes. (i) The scalability numbers are taken from the respective papers. (ii) Results
of Sharemind [8] are taken from Conclave [54] experimental comparison. (ii) #DB owners were in each paper was reported two; thus, we executed Prism for two DB owners for this table. (iv) Only Jana,
SMCQL, Sharemind, and Conclave provide identical security like Prism. (v) h: hours. m: minutes. s: seconds. †: We setup Jana for two DB owners each with 1M values in our experiments. ‡: Conclave [54]
uses a trusted party. Yes: Requires communication among servers. No: No communication among servers. ∗: Based on MPC-based systems. ∗∗: N/A because executing operation in cleartext or at the trusted
party.𝑚: #DB owners. 𝑛: DB size.𝑋 : domain size. ‡‡: A insecure technique that reveals the size of the intersection, and hence fast. 𝛼 : The cost of Bilinear Map pairing technique.

Data Size 5M 20M

PSI 1.3 4.8
Count 1.7 5.4
Sum 3.1 10.3
Avg 3.2 10.3
Max 2.8 9.5
PSU 1.3 4.8

Table 14: Exp 3. DB owner

processing time in result

construction (in seconds).

100 10 1 0.1 0.01
Fill Factor (%)

0.00

0.25

0.50

0.75

1.00

A
ct

ua
l D

om
ai

n 
Si

ze
1e8

W Bucketization
W/O Bucketization

Figure 5: Exp 4. Impact of

bucketization.

Exp 3. DB owner processing time in result construction. In
Prism, DB owners perform computation on additive or multiplica-
tive shares. Table 14 shows the processing time at a DB owner over
5M and 20M domain values for different operations. It is clear that
the DB owner processing time is significantly less than the server
processing time. In case of 5M (20M) OK values and 50 DB owners,
each DB owner took at most 4s (13s) in PSI Sum (PSI Sum) query,
while servers took at least 20s (72s) in PSI (PSI) query; see Figure 4.
Exp 4. Impact of bucketization. Figure 5 shows the reduction in
the number of values on which we need to execute PSI when using
bucketization technique (§6.6). We created a tree with fanout 10,
height 9, and 100M values at the leaf level. In Figure 5, we refer to
the percentage of leaf nodes of the tree that containing one as fill
factor. We use a term actual domain size (in Figure 5) that refers to
the number of items on which we execute PSI. The actual domain
size is different from the real domain size that refers to domain
values given to us, i.e., 100M. The actual domain size depends on
the fill factor and impacts the performance of PSI. When fill factor
is 100% (i.e., all leaf nodes have one; thus, the entire tree has one),
the actual domain size was 111M. But, if the fill factor was only
0.01% of 100M values (i.e., 10K), then most of the tree contained
zero; thus, we run PSI only on actual domain size of 400K, instead of
real domain size of 100M. Note, for this experiment, we generated
the data randomly. If there is a correlation in the data (the case in
most real-world datasets), bucketization results will be even better.

8.2 Comparing with Other Works

We compare Prism against the state-of-the-art cloud-based indus-
trial MPC-based systems: Galois Inc.’s Jana [5], since it provides
identical security guarantees at servers as Prism. To evaluate Jana,
we inserted two LineItem tables (each of 1M rows) having ⟨OK, PK,
LN, SK, DT⟩ columns and executed join on OK column. However,
the join execution took more than 1 hour to complete.

[2, 3, 37–39, 45, 51] provide cloud-based PSI/PSU/aggregation
techniques/systems. We could not experimentally compare

Prism against such systems, since none are open-source, except
SMCQL [6], (which we installed and works for a very small data

and incurs runtime errors). Thus, in Table 13, we report experimen-
tal results from those papers, just for intuition purposes. With the
exception of [37], none of the techniques supports a large-sized
dataset, has quadratic/exponential complexity, or uses expensive
cryptographic techniques [51]. While [37] scales better, it does not
support aggregation and, also, reveals which item is in the intersec-
tion set. For a fair comparison, we report Prism results only for two
DB owners in Table 13, since other papers do not provide experi-
mental results for more than two DB owners. In our experiments
(Figure 4a), Prism supports 50 DB owners and takes at most ≈41
seconds on 5M values. Also, note that, in case of 1B values and two
DB owners, Prism takes ≈ 7.3mins, unlike [37] that took ≈10mins.

Several non-cloud-based PSI approaches also exist and can-

not be directly compared against Prism, due to a different model
used (in which DB owners communicate amongst themselves and
do not outsource data to cloud) and/or different security properties
(e.g.,[4, 15, 21, 23, 26, 32, 41, 43, 47, 49]). Many schemes including
Yao’s approach [57] for comparison/max finding were proposed;
e.g., [9–11, 20, 30, 48, 53]. Such techniques have limitations: many
communication rounds, restricted to two DB owners, quadratic
computation cost at servers, not dealing with malicious adversaries
in cloud settings, and/or no support for result verification.
Comparison between Prism and Obscure [28]. While both
Prism and Obscure are based on secret-sharing, they are signif-
icantly different from each other in terms of: (i) purposes: Prism
is for computing simple aggregation over PSI/PSU queries over
multi-owner databases, while Obscure is for complex conjunc-
tive/disjunctive aggregation query processing over outsourced data
and does not support PSI/PSU queries; (ii) implementation: Prism is
based on domain-based representation, while Obscure is based on
unary representation; (iii) query execution complexities: Prism com-
plexity isO(𝑚×Dom(𝐴𝑐 )), where𝑚 is #DB owners andDom(𝐴𝑐 ) is
the domain of attribute 𝐴𝑐 , while Obscure complexity is O(𝑛 × 𝐿),
where 𝑛 is the number of tuples and 𝐿 is the length of a value
in unary representation. Thus, a direct comparison between the

two non-identical systems is infeasible. Full version [1] shows
overheads of these different secret-sharing techniques.

9 CONCLUSION

This paper describes Prism based on secret-sharing that allows mul-
tiple DB owners to outsource data to (a majority of) non-colluding
servers, behaving like honest-but-curious and malicious servers in
terms of computations that they perform. Prism exploits the addi-
tive and multiplicative homomorphic property of secret-sharing
techniques to implement set operations (intersection, union) and
aggregation functions. Experimental results show Prism scales to
both a large number of DB owners and to large datasets.
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