
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 1

OBSCURE: Information-Theoretically Secure,
Oblivious, and Verifiable Aggregation Queries on

Secret-Shared Outsourced Data
Peeyush Gupta, Yin Li, Sharad Mehrotra, Nisha Panwar, Shantanu Sharma, and Sumaya Almanee

Abstract—Despite exciting progress on cryptography, secure and efficient query processing over outsourced data remains an open
challenge. We develop a communication-efficient and information-theoretically secure system, entitled OBSCURE for aggregation
queries with conjunctive or disjunctive predicates, using secret-sharing. OBSCURE is strongly secure (i.e., secure regardless of the
computational-capabilities of an adversary) and prevents the network, as well as, the (adversarial) servers to learn the user’s queries,
results, or the database. In addition, OBSCURE provides additional security features, such as hiding access-patterns (i.e., hiding the
identity of the tuple satisfying a query) and hiding query-patterns (i.e., hiding which two queries are identical). Also, OBSCURE does not
require any communication between any two servers that store the secret-shared data before/during/after the query execution.
Moreover, our techniques deal with the secret-shared data that is outsourced by a single or multiple database owners, as well as, allows
a user, which may not be the database owner, to execute the query over secret-shared data. We further develop (non-mandatory)
privacy-preserving result verification algorithms that detect malicious behaviors, and experimentally validate the efficiency of OBSCURE

on large datasets, the size of which prior approaches of secret-sharing or multi-party computation systems have not scaled to.

Index Terms—Computation and data privacy, data and computation outsourcing, multi-party computation, Shamir’s secret-sharing,
result verification.

F

1 INTRODUCTION

Database-as-a-service (DaS) [36] allows authenticated users
to execute their queries on an untrusted public cloud. Over the
last two decades, several cryptographic techniques (e.g., [8], [33],
[35], [44], [46]) have been proposed secure and privacy-preserving
computations in the DaS model. These techniques can be broadly
classified based on cryptographic security into two categories:
Computationally secure techniques that assume the adversary
lacks adequate computational capabilities to break the underlying
cryptographic mechanism in polynomial time (i.e., a practically
short amount of time). Non-deterministic encryption [35], homo-
morphic encryption [33], order-preserving encryption (OPE) [8],
and searchable-encryption [46] are examples of such techniques.
Information-theoretically secure techniques that are uncon-
ditionally secure and independent of adversary’s computational
capabilities. Shamir’s secret-sharing (SSS) [44] is a well-known
information-theoretically secure protocol. In SSS, multiple (se-
cure) shares of a dataset are kept at mutually suspicious servers,
such that a single server cannot learn anything about the data.
Secret-sharing-based techniques are secure under the assumption
that a majority of the servers (equal to the threshold of the secret-
sharing mechanism) do not collude. Secret-sharing mechanisms

A preliminary version of this work was accepted in VLDB 2019.
Corresponding author: Shantanu Sharma shantanu.sharma@uci.edu
P. Gupta, S. Mehrotra, S. Sharma, and S. Almanee are with University of
California, Irvine, USA. Yin Li is with Dongguan University of Technology,
P.R. China. N. Panwar is with Augusta University and University of California,
Irvine, USA.
Manuscript received 05 Oct. 2019; accepted 22 Mar. 2020. DOI:
10.1109/TKDE.2020.2983932. c©2020 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, including
reprinting/republishing this material for advertising or promotional purposes,
collecting new collected works for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.
The final published version of this paper may differ from this accepted version.

also have applications in other areas such as Byzantine agreement,
secure multiparty computations (MPC), and threshold cryptogra-
phy, as discussed in [14].

The computationally or information-theoretically secure
database techniques can also be broadly classified into two cate-
gories, based on the supported queries: (i) Techniques that support
selection/join: Different cryptographic techniques are built for
selection queries, e.g., searchable encryption, deterministic/non-
deterministic encryption, and OPE; and (ii) Techniques that sup-
port aggregation: Cryptographic techniques that exploit homomor-
phic mechanisms such as homomorphic encryption, SSS, or MPC
techniques.

While both computationally and information-theoretically se-
cure techniques have been studied extensively in the cryptographic
domain, secure data management has focused disproportionately
on computationally secure techniques (e.g., OPE, homomorphic
encryption, searchable-encryption, and bucketization [36]) result-
ing in systems such as CryptDB [42], Monomi [48], MariaDB [1],
CorrectDB [10]). Some exceptions to the above include [28], [29],
[30], [50] that have focused on secret-sharing.

Recently, both academia [23], [28], [30], [50] and indus-
tries [2], [9], [16] have begun to explore information-theoretically
secure techniques using MPC that efficiently supports OLAP tasks
involving aggregation queries, while achieving higher security
than computationally secure techniques.1 For instance, commer-
cial systems, such as Jana [9] by Galois, Pulsar [2] by Stealth
Software, Sharemind [16] by Cybernetica, and products by compa-
nies such as Unbound Tech., Partisia, Secret Double Octopus, and

1. Some of the computationally secure mechanisms are vulnerable to computationally
powerful adversaries. For instance, Google, with sufficient computational capabilities,
broke SHA-1 [3].

ar
X

iv
:2

00
4.

13
11

5v
1

 [
cs

.D
B

]
 2

7
A

pr
 2

02
0

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 2

SecretSkyDB Ltd. have explored MPC-based databases systems
that offer strong security guarantees. Benefits of MPC-based meth-
ods in terms of both higher-level security and relatively efficient
support for aggregation queries have been extensively discussed in
both scientific articles [24], [31], [41], [43] and popular media [4],
[5], [6], [7].

Much of the above work on MPC-based secure data manage-
ment requires several servers to collaborate to answer queries.
These collaborations require several rounds of communication
among non-colluding servers. Instead, we explore secure data
management based on SSS that does not require servers to
collaborate to generate answers and can, hence, be implemented
more efficiently. There is prior work on exploring secret-sharing
for SQL processing [28], [29], [30], [50], but the developed
techniques suffer from several drawbacks, e.g., weak security
guarantees such as leakage of access patterns, significant overhead
of maintaining polynomials for generating shares at the database
(DB) owner, no support for third-party query execution on the
secret-shared outsourced database, etc. We discuss the limitations
of existing secret-sharing-based data management techniques in
details in §2.2.
Contribution. Our contributions in this paper are threefold:

1) SSS-based algorithms (entitled OBSCURE) that support a large
class of access-pattern-hiding aggregation queries with selection.
OBSCURE supports count, sum, average, maximum, minimum,
top-k, and reverse top-k, queries, without revealing anything about
data/query/results to an adversary.

2) An oblivious result verification algorithm for aggregation queries
such that an adversary does not learn anything from the verifi-
cation. OBSCURE’s verification step is not mandatory. A querier
may run verification occasionally to confirm the correctness of
results.

3) A comprehensive experimental evaluation of OBSCURE on a vari-
ety of queries that clearly highlight its scalability to moderate-size
datasets and its efficiency compared to both state-of-the-art MPC-
based solutions, as well as, to the simple strategy of downloading
encrypted data at the client, decrypting it, and running queries at
the (trusted) client.
Applications. Our proposed algorithms can deal with datasets
outsourced by a single or multiple DB owners. Here, we provide
examples of each scenario.
DB outsourcing by a single DB owner: Hospital database. A
hospital may outsource its patient database to an (untrusted cloud)
server. Given the sensitivity of the patient records, such data needs
to be secured cryptographically. The hospital may still wish to
execute analytical queries on the sever over such data (e.g., number
of influenza patients seen in the last month) for its own internal
logistical planning.
DB outsourcing by multiple DB owners: Smart metering (or
IoT sensors). Smart meters’ data outsourcing is an example of
multiple DB owners and a single querier. In smart meter settings,
smart meter devices keep the energy consumptions of a home
at given time intervals and send the data to the servers [45].
This data contains behavioral information of the user; hence, a
cryptographic technique should be used to make it secure before
outsourcing. Users may execute queries on this secure database
for monitoring and comparing their usage to that of others in the
neighborhood. Executing such aggregate queries involve count,
sum, and maximum operations in an oblivious manner at the
server for preventing access to users’ behavioral information.
Our proposed algorithms prevent an adversarial server to learn

the user’s behaviors, when storing the database or executing a
query. Privacy-preserving data integration [11], [12], [13], [15],
[39], where different datasets – owned by different DB owners
– are intergraded into a single dataset, is also an example DB
outsourcing by multiple owners. However, [11], [12], [13], [15],
[39] deal with only encrypted data integration; thus, we do not
discuss such techniques in detail.

Outline of the paper: §2 provides an overview of secret-sharing
techniques and related work. §3 and §4 provide the model, an
adversary model, security properties, and data outsourcing model.
§5 provides conjunctive/disjunctive count queries and their verifi-
cation algorithm. §6 provides conjunctive/disjunctive sum queries
and their verification algorithm. §7 provides an algorithm for
fetching tuples having maximum values in some attributes with
their verification. §9 provides an experimental evaluation.
Appendix. In appendix, we provide the following: an example
of count query verification using secret-shared data, an approach
for finding maximum over SSS databases outsourced by multiple
DB owners, approaches for the minimum and top-k, an outline
for security proofs, and a communication-efficient strategy for
knowing tuples that satisfied a query predicate.

2 BACKGROUND

Here, we provide an overview of secret-sharing with an example
and compare our proposed approach with existing works.

2.1 Building Blocks
OBSCURE is based on SSS, string-matching operations over
SSS, and order-preserving secret-sharing (OP-SS). This section
provides an overview of these existing techniques.

Shamir’s secret-sharing (SSS). In SSS [44], the DB owner
divides a secret value, say S, into c different fragments, called
shares, and sends each share to a set of c non-communicating
participants/servers. These servers cannot know the secret S until
they collect c′ < c shares. In particular, the DB owner randomly
selects a polynomial of degree c′ with c′ random coefficients, i.e.,
f(x) = a0 + a1x + a2x

2 + · · · + ac′x
c′ , where f(x) ∈ Fp[x],

p is a prime number, Fp is a finite field of order p, a0 = S, and
ai ∈ N(1 ≤ i ≤ c′). The DB owner distributes the secret S
into c shares by placing x = 1, 2, . . . , c into f(x). The secret
can be reconstructed based on any c′ + 1 shares using Lagrange
interpolation [22]. Note that c′ ≤ c, where c is often taken to be
larger than c′ to tolerate malicious adversaries that may modify
the value of their shares. For this paper, however, since we are not
addressing the availability of data, we will consider c and c′ to be
identical.

SSS allows an addition of shares, i.e., if s(a)i and s(b)i are
shares of two values a and b, respectively, at the server i, then the
server i can compute an addition of a and b itself, i.e., a + b =
s(a) + s(b), without knowing real values of a and b.

String-matching operation on secret-shares. Accumulating-
Automata (AA) [27] is a new string-matching technique on secret-
shares that do not require servers to collaborate to do the operation,
unlike MPC-techniques [9], [16], [17], [18], [25], [38]. Here, we
explain AA to show how string-matching can be performed on
secret-shares.

Let D be the cleartext data. Let S(D)i (1 ≤ i ≤ c) be
the ith secret-share of D stored at the ith server, and c be
the number of non-communicating servers. AA allows a user to

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 3

search a pattern, pt , by creating c secret-shares of pt (denoted
by S(pt)i, 1 ≤ i ≤ c), so that the ith server can search the
secret-shared pattern S(pt)i over S(D)i. The result of the string-
matching operation is either 1 of secret-share form, if S(pt)i
matches with a secret-shared string in S(D)i or 0 of secret-
share form; otherwise. Note that when searching a pattern on the
servers, AA uses multiplication of shares, as well as, the additive
property of SSS, which will be clear by the following example.
Thus, if the user wants to search a pattern of length l in only one
communication round, while the DB owner and the user are using
a polynomial of degree one, then due to multiplication of shares,
the final degree of the polynomial will be 2l, and solving such a
polynomial will require at least 2l + 1 shares.
Example. Assume that the domain of symbols has only three
symbols, namely A, B, and C. Thus, A can be represented as
〈1, 0, 0〉. Similarly, B and C can be represented as 〈0, 1, 0〉 and
〈0, 0, 1〉, respectively.
DB owner side. Suppose that the DB owner wants to outsource B
to the (cloud) servers. Hence, the DB owner may represent B as
its unary representation: 〈0, 1, 0〉. If the DB owner outsources the
vector 〈0, 1, 0〉 to the servers, it will reveal the symbol. Thus, the
DB owner uses any three polynomials of an identical degree, as
shown in Table 1, to create three shares.

Vector values Polynomials First
shares

Second shares Third
shares

0 0 + 5x 5 10 15
1 1 + 9x 10 19 28
0 0 + 2x 2 4 6

TABLE 1: Secret-shares of a vector 〈0, 1, 0〉, created by the DB
owner.

User-side. Suppose that the user wants to search for a symbol B.
The user will first represent B as a unary vector, 〈0, 1, 0〉, and
then, create secret-shares of B, as shown in Table 2. Note that
there is no need to ask the DB owner to send any polynomials to
create shares or ask the DB owner to execute the search query.

Vector values Polynomials First
shares

Second shares Third
shares

0 0 + x 1 2 3
1 1 + 2x 3 5 7
0 0 + 4x 4 8 12

TABLE 2: Secret-shares of a vector 〈0, 1, 0〉, created by the
user/querier.

Server-side. Each server performs position-wise multiplication of
the vectors that they have, adds all the multiplication resultants,
and sends them to the user, as shown in Table 3. An important
point to note here is that the server cannot deduce the keyword, as
well as, the data by observing data/query/results.

Computation on
Server 1 Server 2 Server 3
5× 1 = 5 10× 2 = 20 15× 3 = 45
10×3 = 30 19× 5 = 95 28×7 = 196
2× 4 = 8 4× 8 = 32 6× 12 = 72
43 147 313

TABLE 3: Multiplication of shares and addition of final shares by
the servers.

User-side. After receiving the outputs (〈y1 = 43, y2 = 147, y3 =
313〉) from the three servers, the user executes Lagrange in-
terpolation [22] to construct the secret answer, as follows:

(x−x2)(x−x3)

(x1−x2)(x1−x3)
× y1 +

(x−x1)(x−x3)

(x2−x1)(x2−x3)
× y2 +

(x−x1)(x−x2)

(x3−x1)(x3−x2)
× y3

=
(x−2)(x−3)
(1−2)(1−3)

× 43 +
(x−1)(x−3)
(2−1)(2−3)

× 147 +
(x−1)(x−2)
(3−1)(3−2)

× 313 = 1

The final answer is 1 that confirms that the secret-shares at the
servers have B.
Note. In this paper, we use AA that utilizes unary representation
as a building block. A recent paper Prio [23] also uses a unary
representation; however, we use significantly fewer number of
bits compared to Prio’s unary representation. One can use Prio’s
unary representation too or use a different private string-matching
technique over secret-shares that supports string-matching over the
shares.

Order-preserving secret-sharing (OP-SS). The concept of OP-
SS was introduced in [29]. OP-SS maintains the order of the values
in secret-shares too, e.g., if v1 and v2 are two values in cleartext
such that v1 < v2, then S(v1) < S(v2) at any server. It is clear
that finding records with maximum or minimum values using OP-
SS are trivial. However, ordering revealed by OP-SS can leak more
information about records. Consider, for instance, an employee
relation, given in Table 5 on page 5. For explanation purpose,
we represent Table 5 in cleartext. In Table 5, the salary field
can be stored using OP-SS. If we know (background knowledge)
that employees in the security department earn more money than
others, we can infer from the representation that the second tuple
corresponds to someone from the security department. Thus, OP-
SS, by itself, offers little security. However, as we will see later in
§7, by splitting the fields such as salary that can be stored using
OP-SS, while storing other fields using SSS, we, thus, can benefit
from the ordering supported by OP-SS without compromising on
security.

2’s complement-based sigbit computation. [26] provided 2’s
complement-based sigbit computation. We will use signbit to
find if two numbers are equal or not, as follows: A ≥
B if signbit(A−B) = 0, and A < B if signbit(A−B) = 1.
Let A = [an, an−1, . . . , a1] be a n bit number and B =
[bn, bn−1, . . . , b1] be a n bit number. 2’s complement subtraction
converts B −A into B + Ā+ 1, where Ā+ 1 is 2’s complement
representation of−A. We start from the least significant bit (LSB)
and go through the rest of the bits. The method inverts ai (by doing
1 − ai, where 1 ≤ i ≤ n), calculates ā0 + b0 + 1 and its carry
bit. After finishing this on all the n bits, the most significant bit
(MSB) keeps the signbit.

2.2 Comparison with Existing Work
Comparison with SSS databases. In 2006, Emekçi et al. [29]
introduced the first work on SSS data for executing sum, maxi-
mum, and minimum queries. However, [29] uses a trusted-third-
party to perform queries and is not secure, since it uses OP-SS to
answer maximum/minimum queries. Another paper by Emekçi et
al. [30] on OP-SS based aggregation queries requires the database
(DB) owner to retain each polynomial, which was used to create
database shares, resulting in the DB owner to store n×m polyno-
mials, where n and m are the numbers of tuples and attributes in
a relation. [30] is also not secure, since it reveals access-patterns
(i.e., the identity of tuples that satisfy a query) and using OP-
SS.2 Like [30], [50] proposed a similar approach and also suffers
from similar disadvantages. [47] proposed SSS-based sum and
average queries; however, they also require the DB owner to retain

2. While [9], [28], [29], [30] have explored mechanisms to support selection and
join operations over the secret-shared data, these techniques are not secure (e.g., leak
information from access-patterns), are inefficient (often requiring quadratic computations),
and require transmitting entire dataset to users. SS can primarily be used to support OLAP
style aggregation queries, which is our focus in this paper.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 4

tuple-ids of qualifying tuples. [28] used a novel string-matching
operation over the shares at the server, but it cannot perform
general aggregations with selection over complex predicates. In
short, all the SSS-based solutions for aggregation queries either
overburden the DB owner (by storing enough data related to
polynomials and fully participating in a query execution), are
insecure due to OP-SS, reveal access-patterns, or support a very
limited form of aggregation queries without any selection criteria.

In contrast, OBSCURE eliminates all such limitations. It pro-
vides a fully secure and efficient solution for implementing ag-
gregation queries with selections. Our experimental results will
show that OBSCURE scales to datasets with 6M tuples on TPC-
H queries, the size of which prior secret-sharing and/or MPC-
based techniques have never scaled to. The key to the efficient
performance of OBSCURE still is exploiting OP-SS – while OP-
SS, in itself, is not secure (it is prone to background knowledge
attacks, for instance). The way OBSCURE uses OP-SS, as will be
clear in §4, it prevents such attacks by appropriately partitioning
data, while still being able to exploit OP-SS for efficiency. In ad-
dition, to support aggregation with selections, OBSCURE exploits
the string-matching techniques over shares developed in [27].

Furthermore, as we will see in experimental section (§9),
OBSCURE scales to datasets with 6M tuples on TPC-H queries.

Comparison with MPC-techniques. OBSCURE also overcomes
several limitations of existing MPC-based solutions. Recent
work, Prio [23] supports a mechanism for confirming the max-
imum number, if the maximum number is known; however,
Prio [23] does not provide any mechanism to compute the max-
imum/minimum. Also, Prio does not provide methods to execute
conjunctive and disjunctive count/sum queries. Another recent
work [17] deals with adding shares in an array under malicious
servers and malicious users, using the properties of SSS and
public-key settings. However, [17] is unable to execute a single-
dimensional, conjunctive, or disjunctive sum query. Note that (as
per our assumption) though, [17] can tolerate malicious users,
while OBSCURE is designed to only handle malicious servers, and
it assumes users to be trustworthy.

Other works, e.g., Sepia [18] and [25], perform addition
and less than operations, and use many communication rounds.
In contrast, OBSCURE uses minimal communication rounds be-
tween the user and each server, (when having enough shares).
Specifically, count, sum, average, and their verification algorithms
require at most two rounds between each server and the user.
However, maximum/minimum finding algorithms require at most
four communication rounds. In addition, our scheme achieves the
minimum communication cost for aggregate queries, especially
for count, sum, and average queries, by aggregating data locally at
each server.

Comparison with MPC/SSS-based verification ap-
proaches. [38] and [47] developed verification approaches
for secret-shared data. [38] considered verification process for
MPC using a trusted-third-party verifier. While overburdening
the DB owner by keeping metadata for each tuple, [47] provided
metadata-based operation verification (i.e., whether all the desired
tuples are scanned or not) for only sum queries, unlike OBSCURE’s
result verification for all queries. OBSCURE verification methods
neither involve the DB owner to verify the results nor require a
trusted-third-party verifier.

3 PRELIMINARY

This section provides a description of entities, an adversarial
model, and security properties for obliviously executing queries.

3.1 The Model
We assume the following three entities in our model.

1) A set of c > 2 non-communicating servers. The servers do not
exchange data with each other to compute any answer. The only
possible data exchange of a server is with the user/querier or the
database owner.

2) The trusted database (DB) owner, that creates c secret-shares of
the data and transfers the ith share to the ith server. The secret-
shares are created by an algorithm that supports non-interactive
addition and multiplication of two shares, which is required to
execute the private string-matching operation, at the server, as
explained in §2.3

3) An (authenticated, authorized, and trusted) user/querier, who
executes queries on the secret-shared data at the servers. The
query is sent to servers. The user fetches the partial outputs
from the servers and performs a simple operation (polynomial
interpolation using Lagrange polynomials [22]) to obtain the
secret-value.

3.2 Adversarial Model
We consider two adversarial models, in both of which the cloud
servers (storing secret-shares) are not trustworthy. In the honest
but curious model, the server correctly computes the assigned
task without tampering with data or hiding answers. However,
the server may exploit side information (e.g., query execution,
background knowledge, and output size) to gain as much informa-
tion as possible about the stored data. Such a model is considered
widely in many cryptographic algorithms and in widely used in
DaS [20], [36], [49], [51]. We also consider a malicious adversary
that could deviate from the algorithm and delete tuples from the
relation. Users and database owners, in contrast, are assumed to
be not malicious.

Only authenticated users can request query on servers. Further,
we follow the restriction of the standard SSS that the adversary
cannot collude with all (or possibly the majority of) the servers.
Thus, the adversary cannot generate/insert/update shares at the
majority of the servers. Also, the adversary cannot eavesdrop
on a majority of communication channels between the user and
the servers. This can be achieved by either encrypting the traffic
between user and servers, or by using anonymous routing [34],
in which case the adversary cannot gain knowledge of servers
that store the secret-shares. Note that if the adversary could either
collude with or successfully eavesdrop on the communication
channels between the majority of servers and user, the secret-
sharing technique will not apply.4 The validity of the assumptions
behind secret-sharing has been extensively discussed in prior
work [24], [31], [41], [43]. The adversary can be aware of the
public information, such as the actual number of tuples and
number of attributes in a relation, which will not affect the security

3. The choice of the underlying non-interactive and string-matching-based secret-
sharing mechanism does not change our proposed aggregation and verification algorithms.

4. The DB owner/user can use anonymous routing to send their data to the servers,
thereby preventing an adversary from determining which user is connecting to which
server. If the adversary knows the majority of the communication channels/servers, then
it can construct the secret-shared query, outputs to the query, and the database.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 5
Simple aggregation queries select α(Ai) from R
Multi-dimensional aggregation queries select α(Ai) from R where Ak = vk OP Al = vl
Multi-dimensional aggregation queries with group-by select Ai, α(Aj) from R where Ak = vk OP Al = vl group by Ai

Multi-dimensional aggregation queries with group-by and having clause select Ai, α(Aj) from R where Ak = vk OP Al = vl group by Ai having γ(Aj) = vi

Notations: α and γ are aggregation operators, such as count, sum, avg, max, and min. OP is a conjunctive or disjunctive operation. Ai, Aj , Ak , and Al are some
attributes of a relation R

TABLE 4: Query types supported by OBSCURE.

of the proposed scheme, though such leakage can be prevented by
adding fake tuples and attributes.5

3.3 Security Properties
In the above-mentioned adversarial model, an adversary wishes
to learn the (entire/partial) data and query predicates. Hence, a
secure algorithm must prevent an adversary to learn the data (i)
by just looking the cryptographically-secure data and deduce the
frequency of each value (i.e., frequency-count attacks), and (ii)
when executing a query and deduce which tuples satisfy a query
predicate (i.e., access-pattern attacks) and how many tuples satisfy
a query predicate (i.e., output-size attacks). Thus, in order to
prevent these attacks, our security definitions are identical to the
standard security definition as in [19], [21], [32]. An algorithm is
privacy-preserving if it maintains the privacy of the querier (i.e.,
query privacy), the privacy of data from the servers, and performs
identical operations, regardless of the user query.

Query/Querier’s privacy requires that the user’s query must be
hidden from the server, the DB owner, and the communication
channel. In addition, the server cannot distinguish between two or
more queries of the same type based on the output. Queries are of
the same type based on their output size. For instance, all count
queries are of the same type since they return almost an identical
number of bits.
Definition: Users privacy. For any probabilistic polynomial time
adversarial server having a secret-shared relation S(R) and any
two input query predicates, say p1 and p2, the server cannot
distinguish p1 or p2 based on the executed computations for either
p1 and p2.

Privacy from the server requires that the stored input data,
intermediate data during a computation, and output data are not
revealed to the server, and the secret value can only be recon-
structed by the DB owner or an authorized user. In addition, two or
more occurrences of a value in the relation must be different at the
server to prevent frequency analysis while data at rest. Recall that
due to secret-shared relations (by following the approach given in
§2.1), the server cannot learn the relations and frequency-analysis,
and in addition, due to maintaining the query privacy, the server
cannot learn the query and the output.

Here, we, also, must ensure that the server’s behavior must be
identical for a given query, and the servers provide an identical
answer to the same query, regardless of the users (recall that user
might be different compared to the data owner in our model). To
show that we need to compare the real execution of the algorithm
at the servers against the ideal execution of the algorithm at a
trusted party having the same data and the same query predicate.
An algorithm maintains the data privacy from the server if the real
and ideal executions of the algorithm return an identical answer to
the user.
Definition: Privacy from the server. For any given secret-shared
relation S(R) at a server, any query predicate qp, and any real

5. The adversary cannot launch any attack against the DB owner. We do not consider
cyber-attacks that can exfiltrate data from the DB owner directly, since defending against
generic cyber-attacks is outside the scope of this paper.

user, say U , there exists a probabilistic polynomial time (PPT)
user U ′ in the ideal execution, such that the outputs to U and U ′

for the query predicate qp on the relation S(R) are identical.

Properties of verification. We provide verification properties
against malicious behaviors. A verification method must be obliv-
ious and find any misbehavior of the servers when computing a
query. We follow the verification properties from [38], as follows:
(i) the verification method cannot be refuted by the majority of the
malicious servers, and (ii) the verification method should not leak
any additional information.

Algorithms’ performance. We analyze our oblivious aggregation
algorithms on the following parameters, which are stated in
Table 7: (i) Communication rounds. The number of rounds that
is required between the user and each server to obtain an answer
to the query. (ii) Scan cost at the server. We measure scan cost
at the server in terms of the number of the rounds that the server
performs to read the entire dataset. (iii) Computational cost at
the user. The number of values/tuples that the user interpolates to
know the final output.

3.4 OBSCURE Overview
Let us introduce OBSCURE at a high-level. OBSCURE allows
single-dimensional and multi-dimensional conjunctive/disjunctive
equality queries. Note that the method of OBSCURE for handling
these types of queries is different from SQL, since OBSCURE

does not support query optimization and indexing6 due to secret-
shared data. Further, OBSCURE handles range-based queries by
converting the range into equality queries. Executing a query on
OBSCURE requires four phases, as follows:
PHASE 1: Data upload by DB owner(s). The DB owner uploads
data to non-communicating servers using a secret-sharing mech-
anism that allows addition and multiplication (e.g., [27]) at the
servers.
PHASE 2: Query generation by the user. The user generates a
query, creates secret-shares of the query predicate, and sends them
to the servers. For generating secret-shares of the query predicate,
the user follows the strategies given in §5 (count query), §6 (sum
queries), §7 (maximum/minimum), and §5.1,§6.1 (verification).
PHASE 3: Query processing by the servers. The servers process
an input query in an oblivious manner such that neither the query
nor the results satisfying the query are revealed to the adversary.
Finally, the servers transfer their outputs to the user.
PHASE 4: Result construction by the user. The user performs
Lagrange interpolation on the received results, which provide an
answer to the query. The user can also verify these results by
following the methods given in §5.1, §6.1, §7.3.

Table 4 shows queries supported by OBSCURE, where α and γ
are aggregation operators, such as count, sum, average, maximum,
and minimum. In order to execute these operators, we provide

6. For the class of queries considered (viz. aggregation with selection), the main
optimization in standard databases is to push selections down and to determine whether an
index-scan should be used or not. In secret-sharing, an index scan cannot be used (at least
not in any obvious way), since sub-setting the data processed will reveal access-patterns,
making the technique less secure. Hence, we avoid using any indexing structure.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 6

algorithms in the following sections. As will become clear soon,
the proposed algorithms may take at most three communication
rounds between the servers and the user. Further, note that in
OBSCURE, a group-by query requires us to know the name of
groups, prior to query execution. For example, if the group-by
operation is executed on Department attribute, then we need to
know all unique department names.

4 DATA OUTSOURCING

This section provides details on creating and outsourcing a
database of secret-shared form. The DB owner wishes to outsource
a relation R having attributes A1, A2, . . . , Am and n tuples, and
creates the following two relations R1 and R2:
• Relation R1 that consists of all the attributes A1, A2, . . . , Am
along with two additional attributes, namely TID (tuple-id) and
Index. As will become clear in §7, the TID attribute will help
in finding tuples having the maximum/minimum/top-k values, and
the Index attribute will be used to know the tuples satisfying the
query predicate. The ith values of the TID and Index attributes
have the same and unique random number between 1 to n.
• Relation R2 that consists of three attributes CTID (cleartext
tuple-id), SSTID (secret-shared tuple-id), and an attribute, say
Ac, on which a comparison operator (minimum, maximum, and
top-k) needs to be supported.7

The ith values of the attributes CTID and SSTID of the rela-
tion R2 keep the ith value of the TID attribute of the relation R1.
The ith value of the attributes Ac of the relation R2 keeps the ith

value of an attribute of the relation R1 on which the user wants to
execute a comparison operator. Further, the tuples of the relations
R2 are randomly permuted. The reason for doing permutation is
that the adversary cannot relate any tuple of both the secret-shared
relations, which will be clear soon by the example below.
Note. The relation S(R1) will be used to answer count and sum
queries, while it will be clear in §7 how the user can use the
two relations S(R1) and S(R2) together to fetch a tuple having
maximum/minimum/top-k/reverse-top-k value in an attribute.

EmpID Name Salary Dept

E101 John 1000 Testing
E101 John 100000 Security
E102 Adam 5000 Testing
E103 Eve 2000 Design
E104 Alice 1500 Design
E105 Mike 2000 Design

TABLE 5: A relation: Employee.

Example. Consider the Employee relation (see Table 5). The DB
owner creates R1 = Employee1 relation8 (see Table 6a) with
TID and Index attributes. Further, the DB owner creates R2 =
Employee2 relation (see Table 6b) having three attributes CTID,
SSTID, and Salary.
Creating secret-shares. Let Ai[aj] (1 ≤ i ≤ m + 1 and
1 ≤ j ≤ n) be the jth value of the attribute Ai. The DB
owner creates c secret-shares of each attribute value Ai[aj] of the
relation R1 using a secret-sharing mechanism that allows string-
matching operations at the server (as specified in §2). However,
c shares of the jth value of the attribute Am+2 (i.e., Index)

7. If there are x attributes on which comparison operators will be executed, then the
DB owner will create x relations, each with attributes CTID, SSTID, and one of the x
attributes.

8. For verifying results of count and sum queries, we add two more attributes to this
relation. However, we do not show here, since verification is not a mandatory step.

EmpID Name Salary Dept TID Index

E101 John 1000 Testing 3 3
E101 John 100000 Security 2 2
E102 Adam 5000 Testing 5 5
E103 Eve 2000 Design 4 4
E104 Alice 1500 Design 1 1
E105 Mike 2000 Design 6 6

(a) R1 = Employee1 relation.

CTID SSTID Salary

1 1 1500
5 5 5000
3 3 1000
6 6 2000
2 2 100000
4 4 2000

(b) R2 =
Employee2 relation.

TABLE 6: Two relations obtained from Employee relation.

Algorithms Query
conditions

Scan
rounds at
a server

Comm.
rounds

Interpolated
values at
user

Count §5
1D 1 1 1
CE 1 1 1
DE 1 1 1

Sum §6
1D 1 1 1
CE 1 1 1
DE 1 1 1

Unconditional max./min.
(SDBMax §7.1)

One occurrence
with tuple

1 1 m

Conditional
maximum/minimum
(SDBMax §7.2)

Finding maxi-
mum

1 2 n + 1 or
T + 1

Tuple fetching 2 2 n + m or
T +m

Maximum/Minimum
(MDBMax) One
occurrences §B

Counting 2n+ 1 1 2
Counting + tu-
ple fetching

2n+ 3 3 2T + `m

Group-by §8.2 1 1 g
Top-k or reverse top-k §C Unique occur-

rence
1 or k 2 or 1 k ×m

Notations. m: # attributes. n: # tuples. D = n × m: the database. 1D: Single-
dimensional equality query. CE: Conjunctive equality query. DE: Disjunctive equality
query. T : # tuples satisfying a query predicate. `: # tuples having the maximum/minimum
in the desired attribute. g: # groups. Condition: the above-mentioned rounds are given
when we have 2l + 1 shares, where l is the maximum length of a keyword.

TABLE 7: Complexities of the algorithms.

are obtained using SSS. This will result in c relations: S(R1)1,
S(R1)2, . . ., S(R1)c, each having m+ 2 attributes. The notation
S(R1)k denotes the kth secret-shared relation of R1 at the server
k. We use the notation Ai[S(aj)]k to indicate the jth secret-
shared value of the ith attribute of a secret-shared relation at the
server k.

Further, on the relation R2, the DB owner creates c secret-
shares of each value of SSTID using a secret-sharing mechanism
that allows string-matching operations on the servers and each
value of Ac using order-preserving secret-sharing [29], [30], [37].
The secret-shares of the relation R2 are denoted by S(R2)i
(1 ≤ i ≤ c). The attribute CTID is outsourced in cleartext with
the shared relation S(R2)i. It is important to mention that CTID
attribute allows fast search due to cleartext representation than
SSTID attribute, which allows search over shares.

Note that the DB owner’s objective is to hide any relationship
between the two relations when creating shares of the relations
S(R1) and S(R2), i.e., the adversary cannot know by just observ-
ing any two tuples of the two relations that whether these tuples
share a common value in the attribute TID/SSTID and Ac or not.
Thus, shares of an ith (1 ≤ i ≤ n) value of the attribute TID
in the relation S(R1)j and in the attribute SSTID of the relation
S(R2)j must be different at the jth server. Also, by default, the
attribute Ac have different shares in both the relations, due to
using different secret-sharing mechanisms for different attributes.
The DB owner outsources the relations S(R1)i and S(R2)i to the
ith server.
Note. Naveed et al. [40] showed that a cryptographically secured
database that is also an using order-preserving cryptographic
technique (e.g., order-preserving encryption or OP-SS) may reveal
the entire data when mixed with publicly known databases. Hence,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 7

in order to overcome such a vulnerability of order-preserving cryp-
tographic techniques, we created two relations, and importantly,
the above-mentioned representation, even though it uses OP-SS
does not suffer from attacks based on background knowledge, as
mentioned in §2. Of course, instead of using the two relations,
the DB owner can outsource only a single relation without using
OP-SS. In the case of a single relation, while we reduce the size
of the outsourced dataset, we need to compare each pair of two
shares, and it will result in increased communication cost, as well
as, communication rounds, as shown in previous works [18], [25],
which were developed to compare two shares.

5 COUNT QUERY AND VERIFICATION

In this section, we develop techniques to support count queries
over secret-shared dataset outsourced by a single or multiple DB
owners. The query execution does not involve the DB owner or
the querier to answer the query. Further, we develop a method to
verify the count query results.

Conjunctive count query. Our conjunctive equality-based count
query scans the entire relation only once for checking sin-
gle/multiple conditions of the query predicate. For exam-
ple, consider the following conjunctive count query: select
count(*) from R where A1 = v1 ∧ A2 = v2 ∧ . . .
∧ Am = vm.

The user transforms the query predicates to c secret-
shares that result in the following query at the jth server:
select count(*) from S(R1)j where A1 = S(v1)j
∧ A2 = S(v2)j ∧ . . . ∧ Am = S(vm)j . Note that the
single-dimensional query will have only one condition. Each
server j performs the following operations:

Output =
∑k=n
k=1

∏i=m
i=1 (Ai[S(ak)]j ⊗ S(vi)j)

⊗ shows a string-matching operation that depends on the under-
lying text representation. For example, if the text is represented as
a unary vector, as explained in §2, ⊗ is a bit-wise multiplication
and addition over a vector’s elements, whose results will be 0 or 1
of secret-share form. Each server j compares the query predicate
value S(vi) against kth value (1 ≤ k ≤ n) of the attribute Ai,
multiplies all the resulting comparison for each of the attributes for
the kth tuple. This will result in a single value for the kth tuple,
and finally, the server adds all those values. Since secret-sharing
allows the addition of two shares, the sum of all n resultant shares
provides the occurrences of tuples that satisfy the query predicate
of secret-share form in the relation S(R1) at the jth server. On
receiving the values from the servers, the user performs Lagrange
interpolation [22] to get the final answer in cleartext.

Correctness. The occurrence of kth tuple will only be included
when the multiplication of m comparisons results in 1 of secret-
share form. Having only a single 0 as a comparison resultant over
an attribute of kth tuple produce 0 of secret-share form; thus, the
kth tuple will not be included. Thus, the correct occurrences over
all tuples are included that satisfy the query’s where clause.

Example. We explain the above conjunctive count query method
using the following query on the Employee relation (refer
to Table 5): select count(*) from Employee where
Name = ‘John’ and Salary = ‘1000’. Table 8 shows
the result of the private string-matching on the attribute Name,
denoted by o1, and on the attribute Salary, denoted by o2.
Finally, the last column shows the result of the query for each
row and the final count answer for all the tuples. Note that for

Name o1 Salary o2 o1 × o2
John 1 1000 1 1
John 1 100000 0 0
Adam 0 5000 0 0
Eve 0 2000 0 0
Alice 0 1500 0 0
Mike 0 2000 0 0

1

TABLE 8: An execution of the conjunctive count query.

the purpose of explanation, we use cleartext values; however, the
server will perform all operations over secret-shares. For the first
tuple, when the servers check the first value of Name attribute
against the query predicate John and the first value of Salary
attribute against the query predicate 1000, the multiplication of
both the results of string-matching becomes 1. For the second
tuple, when the server checks the second value of Name and
Salary attributes against the query predicate John and 1000,
respectively, the multiplication of both the results become 0. All
the other tuples are processed in the same way.

Disjunctive count query. Our disjunctive count query also scans
the entire relation only once for checking multiple conditions of
the query predicate, like the conjunctive count query. Consider,
for example, the following disjunctive count query: select
count(*) from R where A1 = v1 ∨ A2 = v2 ∨ . . .
∨ Am = vm

The user transforms the query predicates to c secret-shares
that results in the following query at the jth server: select
count(*) from S(R1)j where A1 = S(v1)j ∨ . . . ∨
Am = S(vm)j The server j performs the following operation:

Resultki = Ai[S(ak)]j ⊗ S(vi)j , 1 ≤ i ≤ m
Output =

∑k=n
k=1 (((Resultk1 OR Resultk2) OR Resultk3) . . .

OR Resultkm)
To capture the OR operation for each tuple k, the server

generates m different results either 0 or 1 of secret-share
form, denoted by Result i (1 ≤ i ≤ m), each of which
corresponds to the comparison for one attribute. To com-
pute the final result of the OR operation for each tuple k,
one can perform binary-tree style computation. However, for
simplicity, we used an iterative OR operation, as follows:

tempk1 = Resultk1 + Resultk2 − Resultk1 × Resultk2
tempk2 = tempk1 + Resultk3 − tempk1 × Resultk3

...
Outputk = tempkm−1 + Resultkm − tempkm−1 × Resultkm

After performing the same operation on each tuple, finally, the
server adds all the resultant of the OR operation (

∑k=n
k=1 Outputk)

and sends to the user. The user performs an interpolation on the
received values that is the answer to the disjunctive count query.
Correctness. The disjunctive counting operation counts only those
tuples that satisfy one of the query predicates. Thus, by performing
OR operation over string-matching resultants for an ith tuple
results in 1 of secret-share form, if the tuple satisfied one of
the query predicates. Thus, the sum of the OR operation resultant
surely provides an answer to the query.
Information leakage discussion. The user sends query predicates
of secret-share form, and the string-matching operation is executed
on all the values of the desired attribute. Hence, access-patterns are
hidden from the adversary, so that the server cannot distinguish
any query predicate in the count queries. The output of any count
query is of secret-share form and contains an identical number
of bits. Thus, based on the output size, the adversary cannot
know the exact count, as well as, differentiate two count queries.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 8

However, the adversary can know whether the count query is
single-dimensional, conjunctive or disjunctive count query.

5.1 Verifying Count Query Results
In this section, we describe how results of count query can be
verified. Note that we explain the algorithms only for a single-
dimensional query predicate. Conjunctive and disjunctive predi-
cates can be handled in the same way.

Here, our objective is to verify that (i) all tuples of the
databases are checked against the count query predicates, and (ii)
all answers to the query predicate (0 or 1 of secret-share form) are
included in the answer. In order to verify both the conditions, the
server performs two functions, f1 and f2, as follows:

op1 = f1(x) =
∑i=n
i=1 (S(xi)⊗ oi)

op2 = op1 + f2(y) = op1 +
∑i=n
i=1 f2(S(yi)⊗ (1− oi))

i.e., the server executes the functions f1 and f2 on n secret-shared
values each (of two newly added attributesAx andAy , outsourced
by the DB owner, described below). In the above equations oi
is the output of the string-matching operation carried on the ith

value of an attribute, say Aj , on which the user wants to execute
the count query. The server sends the outputs of the function
f1, denoted by op1, and the sum of the outputs of f1 and f2,
denoted by op2, to the user. The outputs op1 and op2 ensure the
count result verification and that the server has checked each tuple,
respectively. The verification method for a count query works as
follows:

The DB owner. For enabling a count query result verification over
any attribute, the DB owner adds two attributes, say Ax and Ay ,
having initialized with one, to the relation R1. The values of the
attributes Ax and Ay are also outsourced of SSS form (not unary
representations) to the servers.
Server. Each server k executes the count query, as mentioned in
§5, i.e., it executes the private string-matching operation on the
ith (1 ≤ i ≤ n) value of the attribute Aj against the query
predicate and adds all the resultant values. In addition, each server
k executes the functions f1 and f2. The function f1 (and f2)
multiplies the ith value of the Ax (and Ay) attribute by the ith

string-matching resultant (and by the complement of the ith string-
matching resultant). The server k sends the following three things:
(i) the sum of the string-matching operation over the attribute Aj ,
as a result, say 〈result〉k, of the count query, (ii) the outputs of the
function f1: 〈op1〉k, and (iii) the sum of outputs of the function
f1 and f2: 〈op2〉k, to the user.
User-side. The user interpolates the received three values from
each server, which result in Iresult , Iop1, and Iop2. If the server
followed the algorithm, the user will obtain: Iresult = Iop1 and
Iop2 = n, where n is the number of tuples in the relation, and it
is known to the user.

Example. In Appendix A, we provide an example of count query
verification over secret-shares. However, here, we explain the
above method using the following query on the Employee rela-
tion (refer to Table 5): select count(*) from Employee
where Name = ‘John’. Table 9 shows the result of the pri-
vate string-matching, functions f1 and f2 at a server. Note that
for the purpose of explanation, we use cleartext values; however,
the server will perform all operations over secret-shares. For the
first tuple, when the servers check the first value of Name attribute
against the query predicate, the result of string-matching becomes
1 that is multiplied by the first value of the attribute Ax, and
results in 1. The complement of the resultant is multiplied by

Name String-matching results f1 f2
John 1 1 0
John 1 1 0
Adam 0 0 1
Eve 0 0 1
Alice 0 0 1
Mike 0 0 1

2 2 4

TABLE 9: An execution of the count query verification.

the first value of the attribute Ay , and results in 0. All the other
tuples are processed in the same way. Note that for this query,
result = op1 = 2 and op2 = 6, if server performs each operation
correctly.
Correctness. Consider two cases: (i) all servers discard an entire
identical tuple for processing, or (ii) all servers correctly process
each value of the attribute Aj , op1, and op2; however, they do not
add an identical resultant, oi (1 ≤ i ≤ n), of the string-matching
operation. In the first case, the user finds Iresult = Iop1 to be
true. However, the second condition (Iop2 = n) will never be
true, since discarding one tuple will result in Iop2 = n−1. In the
second case, the servers will send the wrong result by discarding
an ith count query resultant, and they will also discard the ith

value of the attribute Ax to produce Iresult = Iop1 at the user-
side. Here, the user, however, finds the second condition Iop2 = n
to be false.

Thus, the above verification method correctly verifies the
count query result, always, under the assumption of SSS that an
adversary cannot collude all (or the majority of) the servers, as
given in §3.2.

6 SUM AND AVERAGE QUERIES

The sum and average queries are based on the search operation
as mentioned above in the case of conjunctive/disjunctive count
queries. In this section, we briefly present sum and average queries
on a secret-shared database outsourced by single or multiple DB
owners. Then, we develop a result verification approach for sum
queries.

Conjunctive sum query. Consider the following query: select
sum(A`) from R where A1 = v1∧A2 = v2∧. . .∧Am =
vm.

In the secret-sharing setting, the user transforms the above
query into the following query at the jth server: select
sum(A`) from S(R1)j where A1 = S(v1)j ∧ A2 =
S(v2)j ∧ . . . ∧ Am = S(vm)j . This query will be executed
in a similar manner as conjunctive count query except for the
difference that the ith resultant of matching the query predicate
is multiplied by the ith values of the attribute A`. The jth server
performs the following operation on each attribute on which the
user wants to compute the sum, i.e., A` and Aq:∑k=n

k=1 A`[S(ak)]j × (
∏i=m
i=1 (Ai[S(ak)]j ⊗ S(vi)j))

Correctness. The correctness of conjunctive sum queries is similar
to the argument for the correctness of conjunctive count queries.

Disjunctive sum query. Consider the following query: select
sum(A`) from R where A1 = v1∨A2 = v2∨. . .∨Am =
vm. The user transforms the query predicates to c secret-shares
that results in the following query at the jth server:

select sum(A`) from S(R1)j
where A1 = S(v1)j ∨ A2 = S(v2)j ∨ . . . ∨ Am = S(vm)j

The server j executes the following computation:
Resultki = Ai[S(ak)]j ⊗ S(vi)j , 1 ≤ i ≤ m, 1 ≤ k ≤ n

Output =
∑k=n
k=1 A`[S(ak)]j × (((Resultk1 OR Resultk2) OR

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 9

Resultk3) . . . OR Resultkn)
The server multiplies the kth comparison resultant by the kth

value of the attribute, on which the user wants to execute the sum
operation (e.g., A`), and then, adds all values of the attribute A`.
Correctness. The correctness of a disjunctive sum query is similar
to the correctness of a disjunctive count query.

Average queries. In our settings, computing the average query
is a combination of the counting and the sum queries. The user
requests the server to send the count and the sum of the desired
values, and the user computes the average at their end.
Information leakage discussion. Sum queries work identically
to count queries. Sum queries, like count queries, hide the facts
which tuples are included in the sum operation, and the sum of the
values.

6.1 Result Verification of Sum Queries
Now, we develop a result verification approach for a single-
dimensional sum query. The approach can be extended for con-
junctive and disjunctive sum queries. Let A` be an attribute whose
values will be included by the following sum query. select
sum(A`) from R where Aq = v.

Here, our objective is to verify that (i) all tuples of the
databases are checked against the sum query predicates, Aq = v,
and (ii) only all qualified values of the attribute A` are included
as an answer to the sum query. The verification of a sum query
first verifies the occurrences of the tuples that qualify the query
predicate, using the mechanism for count query verification (§5.1).
Further, the server computes two functions, f1 and f2, to verify
both the conditions of sum-query verification in an oblivious
manner, as follows:

op1 = f1(x) =
∑i=n
i=1 oi(xi + ai + oi)

op2 = f1(x) =
∑i=n
i=1 oi(yi + ai + oi)

i.e., the server executes the functions f1 and f2 on n values,
described below. In the above equations, oi is the output of the
string-matching operation carried on the ith value of the attribute
Aq , and ai be the ith (1 ≤ i ≤ n) value of the attribute A`. The
server sends the sum of the outputs of the function f1, denoted
by op1, and the outputs of f2, denoted by op2, to the user.
Particularly, the verification method for a sum query works as
follows:

The DB owner. Analogous with the count verification method,
if the data owner wants to provide verification for sum queries,
new attributes should be added. Thus, the DB owner adds two
attributes, say Ax and Ay , to the relation R1. The ith values of
the attributes Ax and Ay are any two random numbers whose
difference equals to −ai, where ai is the ith value of the attribute
A`. The values of the attributes Ax and Ay are also secret-shared
using SSS. For example, in Table 10, boldface numbers show these
random numbers of the attribute Ax and Ay in cleartext.
Servers. The servers execute the above-mentioned sum query, i.e.,
each server k executes the private string-matching operation on
the ith (1 ≤ i ≤ n) value of the attribute Aq against the query
predicate v and multiplies the resultant value by the ith value of
the attribute A`. The server k adds all the resultant values of the
attributes A`.
Verification stage. The server k executes the functions f1 and f2
on each value xi and yi of the attributes Ax and Ay , by following
the above-mentioned equations. Finally, the server k sends the
following three things to the user: (i) the sum of the resultant
values of the attributes A`, say 〈sum`〉k, (ii) the sum of the output

Dept Salary o val-
ues

Ax and f1 Ay and f2

Testing 1000 1 1(200+1000+1)=1201 1(−1200+1000+1)=
−199

Security 100000 0 0(1000+100000+0)=0 0(−101000+100000+0)=0
Testing 5000 1 1(−5900+5000+1)=

−899
1(900+5000+1)=5901

Design 2000 0 0(2000+2000+0)=0 0(−4000+2000+1)=0
Design 1500 0 0(500+1500+0)=0 0(−2000+1500+0)=0
Design 2000 0 0(−2100+2000+0)=0 0(100+2000+0)=0

2
∑
f1 =302

∑
f2 =5702

TABLE 10: An execution of the sum query verification.

of the string-matching operations carried on the attribute Aq , say
〈sumq〉k,9 against the query predicate, and (iii) the sum of outputs
of the functions f1 and f2, say 〈sumf1f2〉k.
User-side. The user interpolates the received three values from
each server, which results in Isum`, Isumq , and Isumf1f2. The
user checks the value of Isumf1f2−2×Isumq and Isum`, and if
it finds equal, then it implies that the server has correctly executed
the sum query.
Example. We explain the above method using the fol-
lowing query on the Employee relation (refer to Ta-
ble 5): select sum(Salary) from Employee where
Dept = ‘Testing’. Table 10 shows the result of the private
string-matching (o), the values of the attributes Ax and Ay in
boldface, and the execution of the functions f1 and f2 at a
server. Note that for the purpose of explanation, we show the
verification operation in cleartext; however, the server will perform
all operations over secret-shares.

For the first tuple, when the server checks the first value of
Dept attribute against the query predicate, the string-matching
resultant, o1, becomes 1 that is multiplied by the first value of
the attribute Salary. Also, the server adds the salary of the first
tuple to the first values of the attributes Ax and Ay with o1. Then,
the server multiplies the summation outputs by o1.

For the second tuple, the servers perform the same operations,
as did on the first tuple; however, the string-matching resultant o2
becomes 0, which results in the second values of the attributes Ax
and Ay to be 0. The servers perform the same operations on the
remaining tuples. Finally, the servers send the summation of oi
(i.e., 2), the sum of the salaries of qualified tuples (i.e., 6000), and
the sum of outputs of the functions f1 and f2 (i.e., 6004), to the
user. Note that for this query, Isumf1f2 − 2× Isumq = Isum`,
i.e., 6004− 2× 2 = 6000.
Correctness. The occurrences of qualified tuples against a query
predicates can be verified using the method given in §5.1. Consider
two cases: (i) all servers discard an entire identical tuple for
processing, or (ii) all servers correctly process the query predicate,
but they discard the ith values of the attributes A`, Ax, and Ay .

The first case is easy to deal with, since the count query
verification will inform the user that an identical tuple is dis-
carded by the server for any processing. In the second case,
the user finds Isumf1f2 − 2 × Isumq 6= Isum`, since an
adversary cannot provide a wrong value of Isumq , which is
detected by count query verification. In order to hold the equation
Isumf1f2−2×Isumq = Isum`, the adversary needs to generate
shares such that Isumf1f2 − Isum` = 2 × Isumq , but an
adversary cannot generate any share, as per the assumption of
SSS that an adversary cannot produce a share, since it requires to
collude all (or the majority of) the servers, which is impossible
due to the assumption of SSS, as mentioned in §3.2.

9. If users are interested, they can also verify this result using the method given in
§5.1.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 10

7 MAXIMUM QUERY

This section provides methods for finding the maximum value
and retrieving the corresponding tuples for the two types of
queries, where the first type of query (QMax1) does not have any
query condition, while another (QMax2) is a conditional query, as
follows:

QMax1. select * from Employee where Salary
in (select max(Salary) from Employee)

QMax2. select * from Employee as E1 where
E1.Dept = ’Testing’ and Salary in (select

max(salary) from Employee as E2 where
E2.Dept = ’Testing’)10

Note that the string-matching secret-sharing algorithms (as ex-
plained in §2) cannot find the maximum value, as these algo-
rithms provide only equality checking mechanisms, not comparing
mechanisms to compare between values. For answering maxi-
mum queries, we provide two methods: The first method, called
SDBMax is applicable for the case when only a single DB owner
outsources the database. It will be clear soon that SDBMax takes
only one communication round when answering an unconditional
query (like QMax1) and at most two communication rounds for
answering a conditional query (like QMax2). The second method,
called MDBMax is applicable to the scenario when multiple DB
owners outsource their data to the servers.

SDBMax. In this section, we assume that Ac be an attribute of
the relation S(R1) on which the user wishes to execute maximum
queries. Our idea is based on a combination of OP-SS [29], [37]
and SSS [27], [44] techniques. Specifically, for answering maxi-
mum queries, SDBMax uses the two relations S(R1) and S(R2),
which are secured using secret-shared and OP-SS, respectively,
as explained in §3.1. In particular, according to our data model
(§3.1), the attribute Ac will exist in the relations S(R1)i and
S(R2)i at the server i. The strategy is to jointly execute a query
on the relations S(R1)i and S(R2)i and obliviously retrieve the
entire tuple from S(R1)i. In this paper, due to space restrictions,
we develop SDBMax for the case when only a single tuple has
the maximum value; for example, in Employee relation (see
Table 5), the maximum salary over all employees is unique.

7.1 Unconditional Maximum Query
Recall that by observing the shares of the attribute Ac of the
relation S(R1), the server cannot find the maximum value of the
attribute Ac. However, the server can find the maximum value of
the attribute Ac using the relation S(R2), which is secret-shared
using OP-SS. Thus, to retrieve a tuple having the maximum value
in the attribute Ac of the relation S(R1)i, the ith server executes
the following steps:

1) On the relation S(R2)i. Since the secret-shared values of the
attribute Ac of the relation S(R2)i are comparable, the server i
finds a tuple 〈S(tk), S(value)〉i having the maximum value in
the attribute Ac, where S(tk)i is the kth secret-shared tuple-id
(in the attribute SSTID) and S(value)i is the secret-shared value
of the Ac attribute in the kth tuple.

2) On the relation S(R1)i. Now, the server i performs the
join of the tuple 〈S(tk), S(value)〉i with all the tuples

10. Note that we considered only a single-dimensional condition in QMax2 query.
Our proposed algorithms (without any modification) can find maximum/minimum while
satisfying conjunctive and disjunctive conditions.

of the relation S(R1)i by comparing the tuple-ids (TID
attribute’s values) of the relation S(R1)i with S(tk)i, as follows:∑k=n

k=1 Ap[S(ak)]i × (TID[S(ak)]i ⊗ S(tk)i)
Where p (1 ≤ p ≤ m) is the number of attributes in the relation
R and TID is the tuple-id attribute of S(R1)i. The server
i compares the tuple-id 〈S(tk)〉i with each kth value of the
attribute TID of S(R1)i and multiplies the resultant by the first
m attribute values of the tuple k. Finally, the server i adds all the
values of each m attribute.
Correctness. The server i can find the tuple having the maximum
value in the attribute Ac of the relation S(R2)i. Afterward, the
comparison of the tuple-id S(tk)i with all the values of the TID
attribute of the relation S(R1)i results in n − 1 zeros (when the
tuple-ids do not match) and only one (when the tuple-ids match)
of secret-share form. Further, the multiplication of the resultant (0
or 1 of secret-share form) by the entire tuple will leave only one
tuple in the relation S(R1)i, which satisfies the query.
Information leakage discussion. The adversary will know only
the order of the values, due to OP-SS implemented on the relation
S(R2). However, revealing only the order is not threatening, since
the adversary may know the domain of the values, for example,
the domain of age or salary.

Recall that, as mentioned in §3.1, the relations S(R1) and
S(R2) share attributes: TID/SSTID and Ac (the attribute on
which a comparison operation will be carried). However, by just
observing these two relations, the adversary cannot know any
relationship between them, as well as, which tuple of the relation
S(R1) has the maximum value in the attribute Ac, due to different
representations of common TID/SSTID and Ac values between
the relations. Furthermore, after the above-mentioned maximum
query (QMax1) execution, the adversary cannot learn which tuple
of the relation S(R1) has the maximum value in the attribute Ac,
due to executing an identical operation on each tuple of S(R1)
when joining with a single tuple of S(R2).

7.2 Conditional Maximum Query
The maximum value of the attribute Ac may be different from
the Ac’s maximum value of the tuple satisfying the where clause
of a query. For example, in Employee relation, the maximum
salary of the testing department is 2000, while the maximum
salary of the employees is 100000. Thus, the method given for
answering unconditional maximum queries is not applicable here.
In the following, we provide a method to answer maximum
queries that have conditional predicates (like QMax2), and that
uses two communication rounds between the user and the servers,
as follows:
Round 1. The user obliviously knows the indexes of the relation
S(R1) satisfying the where clause of the query (the method for
obliviously finding the indexes is given below).
Round 2. The user interpolates the received indexes and sends
the desired indexes in cleartext to the servers. Each server i finds
the maximum value of the attribute Ac in the requested indexes
by looking into the attribute CTID of the relation S(R2)i and
results in a tuple, say 〈S(tk), S(value)〉i, where S(tk)i shows
the secret-shared tuple-id (from SSTID attribute) and S(value)i
shows the secret-shared maximum value. Now, the server i per-
forms a join operation between all the tuples of S(R1)i and
〈S(tk), S(value)〉i, as performed when answering unconditional
maximum (QMax1) queries; see §7.1. This operation results in a
tuple that satisfies the conditional maximum query.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 11

Note. The difference between the methods for answering uncon-
ditional and conditional maximum queries is that first we need to
know the desired indexes of S(R1) relation satisfying the where
clause of a query in the case of conditional maximum queries.
Correctness. The correctness of the above method can be argued
in a similar way as the method for answering unconditional
maximum queries.
Information leakage discussion. In round 1, due to obliviously
retrieving indexes of S(R1), the adversary cannot know which
tuples satisfy the query predicate. In round 2, the user sends
only the desired indexes in cleartext to fasten the lookup of the
maximum salary. Note that by sending indexes, the adversary
learns the number of tuples that satisfies the query predicate;11

however, the adversary cannot learn which tuples of the relation
S(R1) have those indexes. Due to OP-SS, the adversary also
knows only the order of values of Ac attribute in the requested
indexes. However, joining the tuple of S(R2), which has the
maximum value in Ac attribute, with all tuples of S(R1) will
not reveal which tuple satisfies the query predicate, as well as,
have the maximum value in Ac.
Aside: Hiding frequency-analysis in round 2 used for condi-
tional maximum queries. In the above-mentioned round 2, the
user reveals the number of tuples satisfying a query predicate.
Now, below, we provide a method to hide frequency-count infor-
mation:
User-side. The user interpolates the received indexes (after round
1) and sends the desired indexes with some fake indexes, which
do not satisfy the query predicate in the round 1, in cleartext to the
servers. Let x = r + f be the indexes that are transmitted to the
servers, where r and f be the real and fake indexes, respectively.
Note that the maximum value of the attributeAc over x tuples may
be more than the maximum value over r tuples. Hence, the user
does the following computation to appropriately send the indexes:
The user arranges the x indexes in a

√
x×
√
x matrix, where all r

real indexes appear before f fake indexes. Then, the user creates√
x groups of tuples ids, say g1, g2, . . . , g√x, where all tuples ids

in an ith row of the matrix become a part of the group gi. Note
that in this case only one of the groups, say gmix , may contain
both the real and fake indexes. Now, the user asks the server to
find the maximum value of the attribute Ac in each group except
for the group gmix and to fetch all

√
x tuples of the group gmix .

Server. For each group, gj , except the group gmix , each server i
finds the maximum value of the attribute Ac by looking into the
attribute CTID of the relation S(R2)i and results in a tuple, say
〈S(tk), S(value)〉i. Further, the server i fetches all

√
x tuples of

the group gmix . Then, the server i performs a join operation (based
on the attribute TID and SSTID, as performed in the second step
for answering unconditional maximum queries; see §7.1) between
all the tuples of S(R1)i and 2

√
x − 1 tuples obtained from the

relation S(R2), and returns 2
√
x− 1 tuples to the user. The user

finds the maximum value over the r real tuples. Note that 2
√
x−1

tuples must satisfy a conditional maximum query; however, due to
space restrictions, we do not prove this claim here.

Note that this method, on one hand, hides the frequency-count;
on the other hand, it requires the servers and the user process more
tuples than the method that reveals the frequency-count.

11. The adversary may already know the classification of tuples based on some criteria,
due to her background knowledge. For example, the number of employees working in
a department or the number of employees of certain names/age. Hence, revealing the
number of tuples satisfying a query does not matter a lot; however, revealing that which
tuples satisfy a query may jeopardize the data security/privacy.

EmpID′ Name′ Salary′ Dept′ TID o Ax Ay

106 47 1000 80 3 1 1(500+1233)=1733 1(-733+1233)=500
106 47 100000 120 2 0 0(400+100273)=0 0(-99873+100273)=0
107 19 5000 80 5 0 0(200+5211)=0 0(-5011+5211)=0
108 32 2000 51 4 0 0(600+2195)=0 0(-1595+2195)=0
109 30 1500 51 1 0 0(300+1690)=0 0(-1390+1690)=0
110 38 2000 51 6 0 0(100+2199)=0 0(-2099+2199)=0

op1 = 1733 op2 = 500

TABLE 11: An execution of the tuple retrieval verification.

Obliviously finding the indexes. For finding the indexes, each
server k executes the following operation: Index[i]k×(Ap[i]k⊗
S(v)k), i.e., the server executes string-matching operations on
each value of the desired attribute, say Ap, of the relation S(R1)
and checks the occurrence of the query predicate v. Then, the
server k multiplies the ith resultant of the string-matching oper-
ation by the ith value of Index attribute of the relation S(R1).
Finally, the server sends all the n values of the attribute Index to
the user, where n is the number of tuples in the relation. The user
interpolates the received values and knows the desired indexes.12

7.3 Verification of Maximum Query
This section provides a method to verify the tuple having max-
imum value in an attribute, Ac. Note that verifying only the
maximum value of the tuple is trivial, since 〈S(value)〉i of
S(R2)i is also a part of the attribute of Ac of S(R1)i, and servers
send a joined output of the relations (see step 2 in §7.1). Thus,
servers cannot alter the maximum value. However, servers can
alter other attribute values of the tuple. Thus, we provide a method
to verify the received tuple.

Verification of retrieved tuple. This method is an extension of the
sum verification method (as given in §6.1). The server computes
two functions, f1 and f2, in an oblivious manner, as follows:

op1 = f1(x) =
∑i=n
i=1 oi(xi + sij)

op2 = f1(x) =
∑i=n
i=1 oi(yi + sij)

i.e., the server executes the functions f1 and f2 on n values,
described below. In the above equations, oi is the output of the
string-matching operation carried on the ith value of the TID
attribute, and si,j be the ith (1 ≤ i ≤ n) value of the attribute
j, where 1 ≤ j ≤ m. The server sends the difference of the
outputs of the functions f1 and f2 to the user. Particularly, the
tuple verification method works as follows:
The DB owner. The DB owner adds one value to each of the
attribute values of a tuple along with new attributes, say Ax and
Ay .

Let A1 be an attribute having only numbers. For A1 attribute,
the newly added ith value in cleartext is same as the existing
ith value in A1 attribute. Let A2 be an attribute having English
alphabets, say attribute Name in Employee relation in Table 5. The
new value is the sum of the positions of each appeared alphabet in
English letters; for example, the first value in the attribute Name
is John, the DB owner adds 47 (10+15+8+14). When creating
shares of the two values at the ith position of the attribute A1 or
A2, the first value’s shares are created using the mechanism that
supports string-matching at the server, as mentioned in §2.1, and
the second value’s shares are created using SSS.

The ith values of the attributes Ax and Ay are two random
numbers whose difference equals to −ai, where ai is the ith

12. The servers can also check conjunctive and/or disjunctive conditions, like one-
dimensional condition (see §5 to recall the method of evaluating conjunctive and/or
disjunctive conditions). Here, the server multiplies the ith resultant of conjunctive and/or
disjunctive conditions matching by the ith value of Index attribute of the relation
S(R1), and then, sends all the n values of the attribute Index to the user.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 12

value obtained after summing all the newly added values to each
attribute of the ith tuple. The values of the attributes Ax and
Ay are secret-shared using SSS. E.g., in Table 11, numbers show
newly added values to attributes Name′, Dept′, and random
numbers (in bold-face) of the attributes Ax and Ay in cleartext
(a prime (′) symbol is used to distinguish these values from the
original attribute values).
Servers. Each server k executes the method for tuple retrieval
as given in step 2 in §7.1. Then, the server k executes functions
f1 and f2, i.e., adds all the m newly added values (one in each
attribute) to xi and yi of the attributes Ax and Ay , respectively,
and then, multiply the resultant of the string-matching operation
carried on TID attribute of the relation S(R1)k. Finally, the server
k sends the following two things to the user: (i) the tuple having
the maximum value in the attribute Ac of the relation S(R1)k;
and (ii) the difference of outputs of the functions f1 and f2, say
〈diff f1f2〉k.
User. After interpolation, the user obtains the desired tuple and
a value, say Idiff f1f2. Like the DB owner, the user generates
a value for each of the attribute values of the received tuple
(see the first step above for generating values), compares against
Isumf1f2, and if it finds equal, then it implies that the server has
correctly sent the tuple.
Example. Table 11 shows the verification process for the first
tuple-id of employee relation; see Table 5. Note that the values
and computation are shown in the cleartext; however, the values
are of secret-share form and the computation will be carried on
shares at servers.

8 OTHER OPERATIONS

This section considers two more cases of a maximum query, where
the maximum value can occur in multiple tuples (§8.1) and find the
maximum value (or retrieve the tuple having the maximum value)
over a dataset outsourced by multiple DB owners (§B). Further,
we present an algorithm for a group-by query.

8.1 Multiple Occurrences of the Maximum Value
In practical applications, more than one tuple may have the
maximum value in an attribute, e.g., two employees (E103 and
E015) earn the maximum salary in design department; see Table 5.
However, the above-mentioned methods (for QMax1 or QMax2)
cannot fetch all those tuples from the relation S(R1) in one round.
The reason is that since the server i uses OP-SS values of the
attribute Ac in the relation S(R2)i for finding the maximum
value, where more than one occurrences of a value have different
representations, the sever i cannot find all the tuples of S(R2)
having the identical maximum value, by looking OP-SS values.

In this subsection, we, thus, provide a simple two-
communication-round method for solving unconditional maxi-
mum queries. This method can be easily extended to conditional
maximum queries.
Data outsourcing. The DB owner outsources the relation S(R1)
as mentioned in §3.1. However, the DB owner outsources the
relation S(R2) with four columns: CTID, SSTID, OP-SS-Ac,
and SS-Ac. The first three columns are created in the same way
as mentioned in §3.1. The ith value of SS-Ac attribute has the
same value as the ith value of OP-SS-Ac attribute. However,
this value is secret-shared using the unary representation, as the
column Ac of the relation S(R1) has, and the DB owner uses
different polynomials over the ith value of the attribute Ac of

S(R1) and the attribute SS-Ac of S(R2); thus, the adversary
cannot observe that which two values are identical in the two
relations.
Query execution. The method uses two communication rounds as
follows:
Round 1. In round 1, the server i finds a tuple
〈S(tk), S(value1), S(value2)〉i having the maximum value (de-
noted by 〈S(value)1〉i) in the attribute Ac, where S(tk)i is
the kth secret-shared tuple-id (in the attribute SSTID) and
〈S(value)2〉i is the secret-shared value of the SS-Ac attribute
in the kth tuple. Afterward, the server i performs the following:

Index[k]× (AC [S(k)]i ⊗ S(value2)i), 1 ≤ k ≤ n
i.e., the server compares 〈S(value2)〉i with each kth value of the
attribute Ac of the relation S(R1) and multiplies the resultant by
the kth index values. The server i provides a list of n numbers to
the user.
Round 2. After interpolating n numbers, the user gets a list
of n numbers having 0 and Index values, where the de-
sired maximum value of the attribute Ac exists. Then, the
user fetches all the tuples having the maximum values based
on the received Index value. In particular, the user creates
new secret-shares of the matching indexes in a way that the
server can perform searching operation on TID attribute. The
server executes the following computation to retrieve all the
tuples, say T , having the maximum value in the attribute Ac:∑k=n

k=1 Ap[S(ak)]i × (TID[S(ak)]i ⊗ S(tj)i)
Where 1 ≤ p ≤ m, 1 ≤ j ≤ T and 1 ≤ k ≤ n, i.e.,

the server i compares each received tuple-id T with each tuple-id
of the relation S(R1)i and multiplies the resultant to the first m
attributes of the relation S(R1)i. Finally, the server i adds all the
attribute values for each tuple-id T .
Complexities. As mentioned, fetching all tuples having the maxi-
mum value in the attribute Ac requires two communication rounds
when answering an unconditional query. Further, each server scans
the entire relation S(R1) twice. However, finding the maximum
number over the attribute OP-SS-Ac can be done using an index.
Information leakage discussion. The adversary learns the order
of the values. The adversary will not learn which tuple has the
maximum value in the attribute Ac. But, the adversary may learn
how many tuples have the maximum value. This can be prevented
by asking queries for fake tuples in round 2 by generating random
TID values, which should be larger than n (the number of tuples
in the relation).
Aside. We can prevent having to outsource S(R2), by adding one
additional communication round between the user and the server.
In that case, the server provides a tuple having the maximum value
in the attribute Ac, and then, the user finds occurrences of the
maximum value in the relation S(R2) by using one additional
round.
Note. Answering conditional maximum query. The above
mechanism can easily be extended to support conditional maxi-
mum queries. For answering a conditional maximum query, the
user includes the above-mentioned two steps to the method given
in §7.2. Thus, fetching all tuples having the maximum value in
the attribute Ac requires three communication rounds, and each
server scans the entire relation S(R1) three times. In particular, in
the first round, the server i provides Index values to the user. In
the second round, the server i finds the tuple having the maximum
value in the attribute Ac from the requested tuple-ids, implements
the above-mentioned method given in round 1, and provides a list

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 13

of n numbers. In the last round, the user fetches all the desired
tuples.

8.2 Group-by Query
A group-by query in combination with aggregation (viz.,
count/sum), can be executed similar to the aggregation query as
mentioned in §5 and §6, if the set of possible values – for the
attribute on which the group-by query will be executed – is known
to the user in advance. For example, consider the following group-
by query on Employee relation, shown in Table 5:

select Dept, count(Dept) from Employee
group by Dept

In this query, the user needs to know the name of departments,
i.e, Testing, Security, and Design, and then, the user can
execute the query at the servers for each department. Below,
we briefly summarize, the execution of a group-by query with
count/sum aggregation operation.
Group-by query with count. Consider the following group-by
query: select Ai, count(Ai) from R group by Ai.
For answering this group-by query, the server j executes the
following computation on each tuple of the relation R for each
group (1 to g):

Output l =
∑k=n
k=1 (Ai[S(ak)]j ⊗ S(vl)j)

Where 1 ≤ l ≤ g, vl is the name of each group, ⊗ shows a string-
matching operation, and Output l is the answer to the group-by
query. The server j will return 〈S(vl)j ,Output l〉, where 1 ≤ l ≤
g. The user interpolates the received answers from the server to
obtain the final answer to the query. Note that since the user will
receive each group name, the user will know the correct answer to
group-by queries for each group.
Group-by query with sum. Consider the following group-by query
involving sum operation: select Ai, sum(A`) from R
group by Ai. For answering this group-by query, the server
j executes the following computation on each tuple of the relation
R for each group (1 to g):

Sum l =
∑k=n
k=1 A`[S(ak)]j × (Ai[S(ak)]j ⊗ S(vl)j)

Where 1 ≤ l ≤ g, vl is the name of each group, ⊗ shows a
string-matching operation, and Sum l is the answer to the group-by
query. The server j will return 〈S(vl)j ,Sum l〉, where 1 ≤ l ≤ g.

Information leakage discussion. In executing the following
query: select Dept, count(Dept) from Employee
group by Dept, the adversary may learn the number of
groups in an attribute, by receiving only three values, one value
for each department. However, the user may also hide such
information, by asking queries for additional fake groups. For
example, the user may ask the count query for fake groups such
as Sale and Production, including the three real groups
(Testing, Security, and Design). Since the stored data and
query predicates are secret-shared, the adversary cannot learn how
many unique values exist in an attribute. In this case, the count
query answer for real groups, after interpolation at the user-side,
will produce the desired answers, but for the fake group, the user
will obtain zero as the answer. Since the user knows the real and
fake groups, the user can distinguish the results.

Note that since the proposed algorithms for group-by queries
produce the result of secret-shared form, it prevents the adversary
to know the frequency-count of each group. In addition, since
the proposed algorithms check each group name against the
desired attribute’s values of each tuple, it hides access-patterns
and prevents the adversary to know which group name is real

or fake. Further, note that different attributes in a relation may
have a different number of unique values, and hence, group-by
queries over different attributes will produce a different number
of answers, (depending on the unique values in attributes). We
can also hide this fact by executing a group-by query for fake
groups. While such a method will prevent information leakages
based on the number of groups across different groups, it will
incur computational cost and communication cost.

8.3 Bucketization-based Range Queries
As we mentioned, we convert a range query into several point
queries that cover the entire range. However, as per Exp 8 (Fig-
ure 5), as the range increases, the computation time also increases.
In order to reduce the computation time, we propose a new method
that creates bins over the domain of attribute values and organizes
these bins into a k-way tree, where k is the number of child nodes
of a node or the number of values in each node at the lowest level.
The bucketization-based range queries works as follows:
DB owner. Assume that the domain of values in an attribute has
1, 2, . . . , n numbers. The DB owner first creates a k-way tree, by
creating n/k nodes at the 0th -level by placing 1, 2, . . . , k numbers
in the first node, k+1, k+2, . . . , 2k numbers in the second node,
and so on. The first level node has dn/k2e nodes, where the first
node of the first level becomes the parent of the first k nodes of
0th node. The second node of the first level becomes a parent
of k + 1, k + 2, . . . , 2k nodes of 0th -level. In this way, the DB
owner constructs a k-way tree of height dlogk(n/k)+1e. Now for
each level, except the root node and the leaf level, the DB owner
adds one attribute in the relation R. An ith value of the attribute
corresponding to a level, say j, is set to be the node id of the jth

level’s node that covers the ith value at the leaf level (i.e., level
0).

Assume that an attribute A of a relation R has 32 numbers
(1, 2, . . . , 32).13 Here, we show how does the DB owner create a
2-way tree and three additional columns. Figure 1 shows a 2-way
tree for 32 numbers. In a 2-way tree, the 0th level has n/k = 16
nodes, each with two numbers. The tree height is logk(n/k)+1 =
5. Here, the DB owner adds three columns, say A1, A2, and A3,
in the relation for levels 1, 2, and 3 of the tree; see Table 12.
Note that, for example, 9th value of the attributes A1, A2, and
A3 contains node-ids of the respective levels that cover 9th value
of the level 0. Thus, the attribute A1 contains 103, since Node
103 covers the value 9, the attribute A2 contains 201, since Node
201 covers the value 9, and the attribute A3 contains 301, since
Node 301 covers the value 9.
Creating secret-shares of the relation. The DB owner c secret-
shares of each attribute value Ai[aj] of the relation R using a
secret-sharing mechanism that allows string-matching operations
at the server (as specified in §2).
User. We assume that the user is aware of the k value used in
the k-way tree creation. For a given range, the user first finds the
minimal set of nodes that cover the range, and then, creates secret-
shares of those node values. We follow a least-match method for
searching node values. Assume a query for counting the number
of tuples having values between 1 and 13. The best-match method
will find only Node 301 that satisfies this query. However, it will

13. For simplicity of presentation, we assume that the attribute has 32 continuous
numbers. Having any 32 numbers will not affect the algorithm. In the case of any 32
number, we will create k-way tree for the minimum and maximum value in the domain,
so that the resulting tree will have many empty nodes.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 14

23,24 25,26 27,28 29.30 31,3217,18 19,20 21,2215,1613,1411,129,107,85,63,41,2

102 103 104 105 106101 107 108

202 203 204201

302

401

301

Level 0

Level 1

Level 2

Level 3

Level 4

Fig. 1: 2-way tree for 32 values.

cover some other values too, resulting in a wrong answer to the
query. Thus, using a minimal set of nodes that cover the range, the
user breaks the range into sub-ranges such as Node 201, Node
103, and value 13. Note that by breaking the range from 1-13 into
point queries requires searching 13 different values. However, in
the modified representation of ranges using 2-way tree, the server
will search only for three values.

Finally, the user creates secret-shares of these three values
(Node 201, Node 103, and value 13) and sends them to the
servers with the information of the desired attribute on which the
server should search for a value.
Server. The server executes the count query as mentioned in §5.
Particularly, in this example, each server searches for Node 201
in the attribute A2, for Node 103 in the attribute A1, and for the
value 13 in the attribute A. Finally, the server adds the outputs
of all three individual searches, which produce the final answer to
the count query.

Note. By following the same idea of breaking a range into sub-
range, one can execute conjunctive and disjunctive count/sum
queries.

9 EXPERIMENTS

This section evaluates the scalability of OBSCURE and compares
it against other SSS- and MPC-based systems. We used a 16GB
RAM machine as a DB owner, as well as, a user that communi-
cates with AWS servers. For our experiments, we used two types
of AWS servers – a relatively weaker 32 GB, 2.5 GHz, Intel Xeon
CPU (Exp 2, 5, 6), and a powerful 144GB RAM, 3.0GHz Intel
Xeon CPU with 72 cores to study the impact of multi-threaded
processing (Exp 3, 8).

9.1 OBSCURE Evaluation
Secret-share (SS) dataset generation. We used four columns (Or-
derkey (OK), Partkey (PK), Linenumber (LN), and Suppkey(SK))
of LineItem table of TPC-H benchmark to generate 1M and
6M rows. To the best of our knowledge, this is the first such
experiment of SSS-based approaches to such large datasets. We
next explain the method followed to generate SS data for 1M
rows. A similar method was used for generating SS data for 6M
rows.

The four columns of LineItem table only contain numbers:
OK: 1 to 300,000 (1,500,000 in 6M), PK: 1 to 40,000 (200,000
in 6M), LN: 1 to 7, and SK: 1 to 2000 (200,000 in 6M). The
following steps are required to generate SS of the four columns in
1M rows:

1) The first step was to pad each number of each column with zeros.
Hence, all numbers in a column contain identical digits to prevent

A A1 A2 A3

1 101 201 301
2 101 201 301
3 101 201 301
4 101 201 301
5 102 201 301
6 102 201 301
7 102 201 301
8 102 201 301
9 103 202 301
10 103 202 301
11 103 202 301
12 103 202 301
13 104 202 301
14 104 202 301
15 104 202 301
16 104 202 301
17 105 203 302
18 105 203 302
19 105 203 302
20 105 203 302
21 106 203 302
22 106 203 302
23 106 203 302
24 106 203 302
25 107 204 302
26 107 204 302
27 107 204 302
28 107 204 302
29 108 204 302
30 108 204 302
31 108 204 302
32 108 204 302

TABLE 12: A relation R having three new attributes, A1, A2, and
A3, based on bucketization of range values.

an adversary to know the distribution of values. For example, after
padding 1 of OK was 000,001. Similarly, values of PK and SK
were padded. We did not pad LN values, since they took only one
digit.

2) The second step was representing each digit into a set of ten
numbers, as mentioned in §2.1, having only 0s or 1s. For example,
000,001 (one value of OK attribute) was converted into 60 num-
bers, having all zeros except positions 1, 11, 21, 31, 41, and 52.
Here, a group of the first ten numbers shows the first digit, i.e., 0,
a group of 11th to 20th number shows the second digit, i.e., 0, and
so on.14 Similarly, each value of PK, SK, and LN was converted.
We also added columns for TID, Index, count, sum, and maximum
verification, and it resulted in the relation R1. Further, we created
another relation, R2, with three attributes CTID, SSTID, and OK,
as mentioned in §4.

3) The third step was creating SS of these numbers. We selected a
polynomial f(x) = secret value + a1x, where a1 was selected
randomly between 1 to 10M for each number, the modulus is
chosen as 15,000,017, and x was varied from one to fifteen to
obtain fifteen shares of each value. On R2, we implemented OP-
SS on OK attribute, and also generated fifteen shares of SSTID.
Thus, we got S(R1)i and S(R2)i, 1 ≤ i ≤ 15. (Exp 5 will
discuss in detail why are we generating fifteen shares.) For sum
and tuple retrieval queries’ time minimization, we add four more
attributes corresponding to each of the four attributes in LineItem
table. A value of each of the four attributes has only one secret-
shared value, created using SSS (not after padding). But, one can
also implement the same query on secret-shared values obtained

14. One may use binary representation for representing secret-shares, since it is
compact as compared to unary representation. However, in binary representation, the
polynomial degree increases significantly, when we perform string-matching operations.
For example, consider a decimal number, say n (= 400), having ld (= 3) digits in
decimal, and takes lb (= 9) digits in binary (110010000). Here, representing 400 using
unary and binary representations will take 30 and 9 numbers, respectively. However, when
the user wishes to perform the minimum computation by interpolating only the desired
answer, we need at least 2 × ld + 1 and 2 × lb + 1 servers for string-matching, when
using unary and binary representation, respectively.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 15

1 2 4 8 16 32 48
Number of Threads

5

10

15

20

25

30

35

40
Ti

m
e(

se
c)

1D Count
2CE Count
3DE Count
1D Sum
2CE Sum
3DE Sum
Unc-Max
C-Max
GroupBy
Data Fetch Time(1D)
Data Fetch Time(DE)
Data Fetch Time(Unc-Max)

(a) 1M rows.

1 2 4 8 16 32 48
Number of Threads

50

100

150

200

250

300

350

Ti
m

e(
se

c)

1D Count
2CE Count
3DE Count
1D Sum
2CE Sum
3DE Sum
Unc-Max
C-Max
GroupBy
Data Fetch Time(1D)
Data Fetch Time(DE)
Data Fetch Time(Unc-Max)

(b) 6M rows.

Fig. 2: Exp 3. Impact of parallelism, evaluated using AWS servers
with 144GB RAM, 3.0GHz Intel Xeon CPU with 72 cores.

after step 2.
4) Lastly, we placed ith share of S(R1) and S(R2) to ith AWS

server.

Exp 1. Data generation time. Table 13 shows the time to generate
secret-shared LineItem table of size 1M and 6M rows, at the DB
owner machine. Note that due to unary representation, the size of
the data is large; however, the data generation time of OBSCURE

is significantly less than an MPC system, which will be discussed
in §9.2.

Tuples Time Size (in GB)
1M ≈ 10 mins |S(R1)| = 1.3, |S(R2)| = 0.3
6M ≈ 1.4 hours |S(R1)| = 14, |S(R2)| = 3

TABLE 13: Exp. 1. Average time and size for shared data
generation using single-threaded implementation at the DB owner.

Exp 2. OBSCURE performance. In OBSCURE, we used
multiple cores of CPU by writing parallel programs for
one-dimensional (1D) count/sum, two-dimensional conjunctive-
equality (2CE) count/sum, three-dimensional disjunctive-equality
(3DE) count/sum, unconditional maximum (Unc-Max), condi-
tional maximum (C-Max), and group-by queries on the LineItem
table having 1M and 6M rows. A parallel program divides rows

into blocks with one thread processing one block, and then, the
intermediate results (generated by each thread) are reduced by the
master thread to produce the final result.

For this experiment having fifteen shares, we used AWS servers
with 144GB RAM, 3.0GHz Intel Xeon CPU with 72 cores, and
varied the degree of parallelism up to 48 (number of parallel
threads). Increasing more threads did not provide speed-up, since
the execution time reached close to the time spent in the sequential
part of the program (Amdahl’s law); furthermore, the execution
time increases due to thread maintenance overheads. Figure 2
shows as the number of threads increases, the computation time
decreases. Also, observe that the data fetch time from the database
remains (almost) same and less than the processing time. Further,
the computation time reduces significantly due to using many
threads on powerful servers (Figure 2). Also, note that as the size
of data increases, the time increases slightly more than linearly.
This is due to the unary representation that requires 10 more
numbers (for the 6M rows table) to cover one new additional digit
in all attribute values (except LN attribute). This increase results
in additional multiplications during string-matching. An important
observation is that executing any query took at most 13seconds on
1M rows and 75seconds on 6M rows.
Count and sum queries. Figure 2 shows the time taken by
1D, 2CE conjunctive-equality, and three-dimensional disjunctive-
equality (3DE) count and sum queries. CE queries were executed
on OK and LN, and DE queries involved OK, PK, and LN
attributes. Observe that as the number of predicates increases, the
computation time also increases, due to an increasing number of
multiplications. The time difference between computations on 1M
and 6M rows is about 6-7.4%.
Maximum queries. Fetching the tuple having the maximum value
in an unconditional maximum query was very efficient, due to
OP-SS, and took at most 9seconds on 1M rows and at most
50seconds on 6M rows; see Figure 2. We executed 1D conditional
maximum query (C-Max). C-Max requires to know the tuple-ids
that satisfy the condition in relation S(R1), and then, determining
the maximum value from S(R2). Note that in both UnC-Max and
C-Max, we achieve the maximum efficiently, due to OP-SS, (while
also preventing background-knowledge-based attacks on OP-SS).
The time difference between fetching a tuple having the maximum
value from 1M and 6M data is about 5.5-6.6%.
Group-by queries. A group-by query works in a similar manner to
1D count/sum query. Figure 2 shows the time taken by a group-by
query when the number of groups was seven (due to LN attribute
that has seven values), where we counted the number of OK values
corresponding to each LN value.

Exp 3. Impact of local processing at a resource-constrained
user. To show the practicality of OBSCURE, we did an experiment,
where a resource-constrained user downloads the entire encrypted
data and executes the computation at their end after decrypting the
data and loading into a database system. We restricted the user
to have a machine with 1GB RAM and single-core 1.35GHz CPU
using docker, unlike multicore servers used in Exp 3, and executed
the same queries that we executed in Exp 3. With this setup,
decryption time at the user side was 54s and 259s for 1M and 6M
rows, respectively. Further, loading decrypted data into a database
system (MySQL) at the user-side took 20s and 120s for 1M and
6M rows, respectively. All queries used in Exp 2 were executed in
1-5s for both 1M and 6M rows. Note that the user computation
time is significantly higher compared to the computation time

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 16

of queries in Exp 3. For example, end-to-end 1D count query
execution in Exp 3 over 6M secret-shared rows took 26s (see
Figure 2b), while the same query took 385s when decrypting and
loading the data into MySQL at the resource-constrained user.

Exp 4. Overheads of result verification. This experiment finds
the overheads of the result verification approaches. Figure 3a
shows that count result verification steps do not incur a significant
cost at the servers, since executing result verification requires only
two more multiplications and modulo on each row’s Ax and Ay
values (see §5.1). However, in the case of a sum query, the cost
increases, due to first verifying count query results, and then, sum
query results. If one drops count query result verification, the
cost decreases significantly; see Figure 3b. Figure 3c shows the
time comparison between fetching a tuple having the maximum
value in an attribute and verifying that tuple. Here, in the case of
UnC-Max-Tuple-Fetch, this step does not involve any condition
checking. However, in the case of Cond-Max-Tuple-Fetch, we
need to first apply count query verification method to verify
that query predicate(s) are evaluated correctly. As mentioned
previously, we are evaluating conditional maximum query for 1D
predicate; hence, this step increases the time of verification by 304
and 790 seconds (s), in the case of 1M and 6M rows, respectively.

1D-Count 2-CE-Count 3-DE-Count
0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
Ti

m
e(

s)

W/O Verification (1M Rows)
W Verification (1M Rows)
W/O Verification (6M Rows)
W Verification (6M Rows)

(a) Count query.

1D-Sum 2-CE-Sum 3-DE-Sum
0

5

10

15

20

25

30

35

Ex
ec

ut
io

n
Ti

m
e(

s)

W/O Verification (1M Rows)
W Verification (1M Rows)
W/O Verification (6M Rows)
W Verification (6M Rows)

(b) Sum query.

UnC-Max-Tuple-Fetch Cond-Max-Tuple-Fetch
0

10

20

30

40

50

60

70

Ex
ec

ut
io

n
Ti

m
e(

s)

W/O Verification (1M Rows)
W Verification (1M Rows)
W/O Verification (6M Rows)
W Verification (6M Rows)

(c) Maximum tuple fetch query.

Fig. 3: Exp 4. Result verification.

Exp 5. Impact of num-
ber of shares. In this
experiment, we study
the impact of the num-
ber of shares on the per-
formance of OBSCURE.
For this experiment, we
used four different se-
tups with data, secret
shared between 3, 5,
11, and 15 servers. Due
to space restrictions, we
show results for 1M
rows only. Figure 9
shows computation time
at the server and user
side, with a different
number of shares.

The results demon-
strate two tradeoffs, first
between the number of
shares and computation
time at the user, and sec-
ond between the num-
ber of shares and the
amount of data trans-
ferred from each server
to the user. As the
number of shares de-
creases, the computation
time at the user in-
creases; since the string-
matching operation re-
sults in the degree of
polynomials to be dou-
bled, and if servers do
not have enough shares,
they cannot compute the

1D-Count 2CE
Count

3DE
Count

1D-Sum 2CE
Sum

3DE
Sum

UnC-Max
Det

UnC-Max
Tuple-Fetch

Cond-Max
Det

Cond-Max
Tuple-Fetch

0

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e(

s)

3
3

3

3

3

3

3

3 3

3

5
5

5

5

5

5

5

5
5

5

11
11

11

11

11

11

11

11
11

11

15
15

15

15

15

15

15

15 15

15

User Processing Time
Server Processing Time

Fig. 4: Exp 5. Impact of the number of shares, using a single
threaded implementation on 32GB RAM, 2.5GHz Intel Xeon
CPU.

final answer and may re-
quire more than one round of communication with the user to
compute the SS aggregate value. Thus, the communication cost
also increases with a decreasing number of shares.

From Figure 9, it is clear that as the number of shares
increases, the computation time at the user decreases and at the
server increases, while the overall query execution time decreases,
generally. In Appendix E, we discuss the processing of each query
under a different number of shares.

Exp 6. Impact of communication cost. An interesting point was
the impact of the communication cost. Since servers send data to
the user over the network, it may affect the overall performance.
As mentioned in Exp 4., using 3 servers, the communication cost
increases as compared to 15 servers. For instance, in executing
DE count/sum queries over PK, LN, and OK attributes took the
highest amount of data transfer when using 3 servers. Since the
number of digits of the three predicates was 12 in 1M rows and
14 in 6M rows, each server sends 12 files (each of size 7MB) in
the case of 1M rows and 14 files (each of size 48MB).

Hence, the server to user communication was 84MB/server in
the case of 1M rows and 672MB/server in the case of 6M rows.
However, in the case of 15 servers, the server to user communi-
cation was 7MB/server in the case of 1M rows and 48MB/server
in the case of 6M rows. When using slow (100MB/s), medium
(500MB/s), and fast (1GB/s) speed of data transmission, the
data transmission time in the case of 15 servers was negligible.
However, in the case of 6M, it took 7s, 1s, less than 1s per server,
respectively, on slow, medium, and fast transmission speed.

Observe that the computation time at the server was at least 40s
in any query on 6M rows (when using 72 core servers; Figure 2b)
that was significantly more than the communication time between
user and servers. Thus, the communication time does not affect the
servers’s computation time, which was the bottleneck.

Exp 7. Range queries. We evaluated range queries for 1D-
count and 1D-sum operations. Given a range query involving k
continuous values, we converted it into k 1D-count/sum queries
(one per value in the range). However, this may require scanning
the secret-shared relation k-times at the server. In order to reduce
the number of scans, we processed (as per 1D-count or sum query)
all the k-values in the range on each tuple, before processing the
next tuple. As a result, we got k values (as per the 1D-count or
sum query) after processing the entire relation. Finally, the server
adds all k values and sends them to the user. We implemented a
range query involving 1D-count/sum operations, using 48 threads
on AWS servers with 144GB RAM, 3.0GHz Intel Xeon CPU with

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 17

2 4 6 8 10
Length of range

3

4

5

6

7

8

9

10

Ti
m

e(
s)

Count(1M Rows)
Sum(1M Rows)

Fig. 5: Exp 7: Impact of executing range
queries.

0 25 50 75 100 125 150 175 200 225
Length of range

20

40

60

80

100

120

Ti
m

e(
s)

With Buckets(Fanout 10)
Without Buckets

Fig. 6: Exp 8: Impact of executing range
queries using bucketization.

0 50 100 150 200 250
Length of range

102

103

104

Nu
m

be
r o

f m
ul

tip
lic

at
io

ns
(p

er
 ro

w)

With Buckets(Fanout 10)
Without Buckets

Fig. 7: Exp 8: Number of multiplication op-
erations used in string-matching operation
in range queries.

72 cores. Figure 5 shows that as the length of range increases
the computation time also increases. In Appendix 8.3, we provide
a bucketization-based approach to reduce the computation time
while increasing the range values.

Exp 8. Bucketization-based range queries. We pre-computed
the range information with k = 10 for OrderKey values (with
domain of 1-150000) of LineItem table of TPC-H. We outsourced
the secret-shared version of this range information along with the
original data. We executed 1D-count query on OrderKey values.
Figure 6 shows that with pre-computed range information in the
form of buckets significantly decreases the computation time (i.e.,
the amount of time spent in range-based filtering over secret-
shared data). Note that the naı̈ve range implementation scales
linearly with the length of range, whereas the bucketized pre-
computed range information along with each tuple, takes almost
constant time even after increasing the range length. Furthermore,
it sometimes drops as fewer buckets are able to cover the entire
range. For example, a range of 1-99 requires 19 searches (9 for
9 buckets covering values from 1 to 90 and extra 9 searches
for values 91 to 99), whereas for a range from 1 to 100 we
only need 1 bucket to represent it, therefore the time required to
execute a range query for 1 to 100 decreases. Figure 7 shows how
the number of multiplications per row varies with the increase
in the range length. We can see that the naı̈ve implementation
requires many multiplications as compared to the bucketization-
based range algorithm. However, since we store range information
along with each tuple, the size of the database increases, requiring
more time to scan the table. Figure 6 shows that for small-sized
ranges (length < 10), the naı̈ve algorithm performs better as the
number of multiplication require by both the algorithms are equal,
but the scanning time for the naı̈ve algorithm is smaller than the
bucketization-based algorithm.

Exp 9. OBSCURE performance on a weaker machine. In
this experiment, we explored OBSCURE on a relatively weaker
single-threaded machine with 32GB. We chose this machine since
(as will be clear in §9.2) the MPC system, we used, can only
work on a local single-threaded machine. To be able to compare
against that we also execute OBSCURE on 32GB AWS servers.
Note that single-threaded implementation of OBSCURE incurs
time overheads, which are significantly reduced when using many
threads on powerful servers; see Exp 2. Likewise Exp 2, we
executed count, sum, unconditional and conditional maximum,
and group-by queries on the LineItem table having 1M and 6M
rows using fifteen shares; see Figure 8. Note that Figure 8 shows
that determining only the maximum value is efficient due to OP-
SS, in the case of unconditional maximum queries (UnC-Max-Det,
QMax1, see §7).

9.2 Comparing with Other Works
The previous works on SSS-based techniques either did not report
any experiments [27], [29] or scaled to only a very small dataset, or
used techniques that, while efficient, were insecure [30], [50]. For
instance, [30], [50] are both vulnerable to access-pattern attacks.
Furthermore, these approaches achieve efficient query processing
times (e.g., 90 ms for aggregation queries on databases of size
150K) by executing queries on SS data identically to that on
cleartext, which requires user sides to retain polynomials, which
were used to generate SS-data. Thus, as mentioned in §2.2, the DB
owner keeps n×m polynomials, where n and m are the number
of rows and columns in a database, respectively.

MPC-based methods, e.g., [9], [16], [17], [18], are secure,
they also do not scale to large datasets due to high overhead of
share creation and/or query execution. For example, MPC-based
Sepia [18] used 65K values for only count operation without

1D-Count 2-CE
Count

3-CE
Count

2-DE
Count

3-DE
Count

1D-Sum 2-CE
Sum

3-CE
Sum

2-DE
Sum

3-DE
Sum

UnC-Max
Det

UnC-Max
Tuple-Fetch

Cond-Max
Det

Cond-Max
Tuple-Fetch

Group By
0

200

400

600

800

1000

1200

1400

Ex
ec

ut
io

n
Ti

m
e(

s)

Obscure (1M Rows)
Obscure (6M Rows)

Fig. 8: Exp 9. OBSCURE performance using a single-threaded implementation on 32GB RAM, 2.5GHz Intel Xeon CPU.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 18

any condition with the help of three to nine servers, and recent
Bonawitz et al. [17] (appeared in CCS 2017) used only 500K
values for count and sum of the numbers. Note that Sepia [18]
and Bonawitz et al. [17] do not support conjunctive/disjunctive
count/sum queries.

We evaluated one of the state-of-the-art industrial MPC-based
systems that we refer to system Z to get a better sense of its
performance compared to OBSCURE, whose performance is given
in Figure 8. However, we note that the MPC systems, as mentioned
in §1, are not available as either open source, and, often, not even
available for purchase, except in the context of a contract. We were
able to gain access to System Z, due to our ongoing collaboration
with the team under the anonymity understanding. We installed
system Z (having three SS of LineItem) on the local machine,
since it was not allowed to install it on AWS. Also, note that we
cannot directly compare system Z and OBSCURE, since system Z
uses a single machine to keep all three shares. Inserting 1M rows
in system Z took 9 hours, while the size of SS data was 1GB.
We executed the same queries using the system Z, which took
the following time: 532s for 1D count, 808s for CE count, 1099s
for DE count, 531s for 1D sum, 801s for CE sum, 1073s for DE
sum, 2205s for UnC-Max-Tuple-Fetch, and 2304s for Cond-Max-
Tuple-Fetch.

10 CONCLUSION

We proposed OBSCURE that is a information-theoretically secure,
oblivious, and communication efficient system for answering
aggregation queries (count, sum, and maximum having single-
dimensional, conjunctive, or disjunctive query predicates) on a
secret-shared dataset outsourced by either a single DB or multiple
DB owners. OBSCURE also supports efficient result verification
algorithms to protect against malicious adversarial cloud servers
that deviate from the algorithm, due to software/hardware bugs.
Our experimental results on 1M rows and 6M secret-shared rows
using AWS servers show better performance as compared a simple
strategy of downloading encrypted data, decrypting, and then,
executing the query at a resource-constrained user. Further, we
showed a tradeoff between the number of shares and performance.
Future directions. While OBSCURE supports a wide range of
aggregation queries, there are some issues that we plan to extend
in the future, listed below:

1) Reducing the number of communication rounds between the user
and the server to one for any aggregation query.

2) Designing an algorithm for group-by queries without knowing the
unique values of the attribute on which the group-by query will be
executed; recall that the existing algorithm for group-by queries
requires to know the unique values in an attribute.

3) Dealing with multiple aggregation operators in a query. For
example, OBSCURE can execute the following query in one
communication round between the user and the server: SELECT
avg(age), max(age) FORM Employee by creating two
sub-queries, one for average and another for maximum. One may
consider how to execute such a query only in one communication
round, without creating two sub-queries.

4) Extending this work on GPU-based efficient join and nested
queries, since the proposed algorithms use multiplication and ad-
dition operations, which can be supported by GPU very efficiently.

ACKNOWLEDGMENT

This material is based on research sponsored by DARPA under
agreement number FA8750-16-2-0021. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
DARPA or the U.S. Government. This work is partially supported
by NSF grants 1527536 and 1545071. This work of Y. Li is sup-
ported by National Natural Science Foundation of China (Grant
no. 61402393, 61601396).

REFERENCES

[1] MariaDB, available at:https://mariadb.com/.
[2] Stealth Pulsar, available at:http://www.stealthsoftwareinc.com/.
[3] https://shattered.io/.
[4] https://www.csoonline.com/article/3237685/identity-

management/biometrics-and-blockchains-the-horcrux-protocol-part-
3.html.

[5] https://bitcoinexchangeguide.com/binance-pays-6-cent-fee-for-moving-
204-million-worth-of-ethereum-eth/.

[6] https://cryptoslate.com/thailands-democrat-party-holds-first-ever-election-
vote-with-blockchain-technology/.

[7] https://blockonomi.com/coinbase-moves-5-billion-crypto/.
[8] R. Agrawal et al. Order-preserving encryption for numeric data. In

SIGMOD, pages 563–574, 2004.
[9] D. W. Archer et al. From keys to databases - real-world applications of

secure multi-party computation. IACR Cryptology ePrint, 2018.
[10] S. Bajaj et al. Correctdb: SQL engine with practical query authentication.

PVLDB, 6(7):529–540, 2013.
[11] M. Barhamgi et al. PrivComp: a privacy-aware data service composition

system. In EDBT, pages 757–760, 2013.
[12] M. Barhamgi et al. Secure and privacy-preserving execution model for

data services. In CAiSE, pages 35–50, 2013.
[13] M. Barhamgi et al. Privacy in data service composition. IEEE Transac-

tions on Services Computing, 2019.
[14] A. Beimel. Secret-sharing schemes: A survey. In IWCC, pages 11–46,

2011.
[15] D. Benslimane et al. PAIRSE: a privacy-preserving service-oriented data

integration system. SIGMOD Record, 42(3):42–47, 2013.
[16] D. Bogdanov et al. Sharemind: A framework for fast privacy-preserving

computations. In ESORICS, volume 5283, pages 192–206, 2008.
[17] K. Bonawitz et al. Practical secure aggregation for privacy-preserving

machine learning. In CCS, pages 1175–1191, 2017.
[18] M. Burkhart et al. SEPIA: privacy-preserving aggregation of multi-

domain network events and statistics. In USENIX, pages 223–240, 2010.
[19] R. Canetti. Security and composition of multiparty cryptographic proto-

cols. J. Cryptology, 13(1):143–202, 2000.
[20] R. Canetti et al. Adaptively secure multi-party computation. In STOC,

pages 639–648, 1996.
[21] C. Chu et al. Efficient k-out-of-n oblivious transfer schemes with adaptive

and non-adaptive queries. In PKC, pages 172–183, 2005.
[22] R. M. Corless et al. A graduate introduction to numerical methods. AMC,

10:12, 2013.
[23] H. Corrigan-Gibbs et al. Prio: Private, robust, and scalable computation

of aggregate statistics. In NSDI, pages 259–282, 2017.
[24] R. Cramer et al. Secure Multiparty Computation and Secret Sharing.

Cambridge University Press, 2015.
[25] I. Damgård et al. Unconditionally secure constant-rounds multi-party

computation for equality, comparison, bits and exponentiation. In TCC,
pages 285–304, 2006.

[26] S. Dolev et al. Secret shared random access machine. In ALGOCLOUD,
volume 9511, pages 19–34.

[27] S. Dolev et al. Accumulating automata and cascaded equations automata
for communicationless information theoretically secure multi-party com-
putation: Extended abstract. In SCC, pages 21–29, 2015.

[28] S. Dolev et al. Privacy-preserving secret shared computations using
mapreduce. CoRR, abs/1801.10323, 2018.

[29] F. Emekçi et al. Privacy preserving query processing using third parties.
In ICDE, page 27, 2006.

[30] F. Emekçi et al. Dividing secrets to secure data outsourcing. Inf. Sci.,
263:198–210, 2014.

https://mariadb.com/
http://www.stealthsoftwareinc.com/

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 19

[31] J. Frankle et al. Practical accountability of secret processes. In USENIX
Security, pages 657–674, 2018.

[32] M. J. Freedman et al. Keyword search and oblivious pseudorandom
functions. In TCC, pages 303–324, 2005.

[33] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

[34] D. M. Goldschlag et al. Onion routing. Commun. ACM, 42(2):39–41,
1999.

[35] S. Goldwasser et al. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[36] H. Hacigümüs et al. Executing SQL over encrypted data in the database-
service-provider model. In SIGMOD, pages 216–227, 2002.

[37] M. A. Hadavi et al. AS5: A secure searchable secret sharing scheme for
privacy preserving database outsourcing. In DPM, pages 201–216, 2012.

[38] W. Jiang et al. Transforming semi-honest protocols to ensure account-
ability. Data Knowl. Eng., 65(1):57–74, 2008.

[39] H. W. Lim et al. PrivateLink: Privacy-preserving integration and sharing
of datasets. IEEE Trans. Information Forensics and Security, 15:564–577,
2020.

[40] M. Naveed et al. Inference attacks on property-preserving encrypted
databases. In CCS, pages 644–655, 2015.

[41] C. Orlandi. Is multiparty computation any good in practice? In ICASSP,
pages 5848–5851, 2011.

[42] R. A. Popa et al. CryptDB: processing queries on an encrypted database.
Commun. ACM, 55(9):103–111, 2012.

[43] A. Rajan et al. Callisto: A cryptographic approach to detecting serial
perpetrators of sexual misconduct. In COMPASS, pages 49:1–49:4, 2018.

[44] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[45] L. V. Silva et al. Security and privacy preserving data aggregation in
cloud computing. In SAC, pages 1732–1738, 2017.

[46] D. X. Song et al. Practical techniques for searches on encrypted data. In
IEEE SP, pages 44–55, 2000.

[47] B. Thompson et al. Privacy-preserving computation and verification of
aggregate queries on outsourced databases. In PETS, pages 185–201,
2009.

[48] S. Tu et al. Processing analytical queries over encrypted data. Proc.
VLDB Endow., 6(5):289–300, 2013.

[49] C. Wang et al. Secure ranked keyword search over encrypted cloud data.
In ICDCS, pages 253–262, 2010.

[50] T. Xiang et al. Processing secure, verifiable and efficient SQL over
outsourced database. Inf. Sci., 348:163–178, 2016.

[51] S. Yu et al. Attribute based data sharing with attribute revocation. In
ASIACCS, pages 261–270, 2010.

Peeyush Gupta is a Ph.D. student, advised by
Prof. Sharad Mehrotra, at University of Califor-
nia, Irvine, USA. He obtained his Master of Tech-
nology degree in Computer Science from Indian
Institute of Technology, Bombay, India, in 2013.
His research interests include IoT data manage-
ment, time series database systems, and data
security and privacy.

Yin Li is an associate professor in the School
of Cyberspace Security, Dongguan University of
Technology, China. Previously, he was an as-
sociate professor in Department of Computer
Science and Technology, Xinyang Normal Uni-
versity, China. He received his Ph.D. degree
in Computer Science from Shanghai Jiaotong
University (SJTU),Shanghai in 2011. He re-
ceived his B.Sc. degree and M.Sc. degree from
Information Engineering University, Zhenzhou,
in2004 and 2007. He was a Post Doc at Ben-

Gurion University of the Negev, Israel, assistedby Prof. Shlomi Dolev.
His current research interests include algorithm and architectures for
computation in finite field, computer algebra, and secure cloud comput-
ing.

Sharad Mehrotra received the PhD degree in
computer science from the University of Texas,
Austin, in 1993. He is currently a professor in
Department of Computer Science, University of
California, Irvine. Previously, he was a professor
with the University of Illinois at Urbana Cham-
paign. He has received numerous awards and
honors, including the 2011 SIGMOD Best Pa-
per Award, 2007 DASFAA Best Paper Award,
SIGMOD test of time award, 2012, DASFAA ten
year best paper awards for 2013 and 2014, 1998

CAREER Award from the US National Science Foundation (NSF), and
ACM ICMR best paper award for 2013. His primary research interests
include the area of database management, distributed systems, secure
databases, and Internet of Things.

Nisha Panwar is an assistant professor at Au-
gusta University, Georgia. She obtained her
Ph.D. in Computer Science from Ben-Gurion
University, Israel, in 2016, where he worked with
Prof. Shlomi Dolev and Prof. Michael Segal. She
received her Master of Technology (M.Tech.) de-
gree in Computer Engineering from National In-
stitute of Technology, Kurukshetra, India in 2011.
She was a Post Doc at University of California,
Irvine, USA. Her research interests include se-
curity and privacy issues in IoT systems, as well

as, in vehicular networks, computer network and communication, and
distributed algorithms.

Shantanu Sharma received his Ph.D. in Com-
puter Science in 2016 from Ben-Gurion Univer-
sity, Israel. During his Ph.D., he worked with
Prof. Shlomi Dolev and Prof. Jeffrey Ullman. He
obtained his Master of Technology (M.Tech.) de-
gree in Computer Science from National Institute
of Technology, Kurukshetra, India, in 2011. He
was awarded a gold medal for the first position
in his M.Tech. degree. Currently, he is pursuing
his Post Doc at University of California, Irvine,
USA, assisted by Prof. Sharad Mehrotra. His

research interests include data security and privacy, building secure
and privacy-preserving systems on sensor data for smart buildings,
designing models for MapReduce computations, distributed algorithms,
mobile computing, and wireless communication.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 20

APPENDIX A
COUNT QUERY VERIFICATION OVER SECRET-
SHARED VALUES

This section shows an example for count query verification over a
secret-shared relation.
Example. Assume that the domain of symbols has only two
symbols, namely A and B. Thus, A can be represented as 〈1, 0〉,
and B can be represented as 〈0, 1〉.
DB owner side. Suppose that the DB owner wants to outsource
three rows having A, B, A, respectively. The DB owner adds two
attributes, Ax and Ay , initialized with one, to the relation; see
Table 14.

Values Ax Ay

A 1 0
B 1 0
A 1 0

TABLE 14: Non-secret-shared relation at the DB owner.

The DB owner uses any polynomials of an identical degree, as
shown in Table 15, to create four shares. Further, the ith share is
placed to the ith server.

Values Vector
values

Polynomials First
shares

Second
shares

Third
shares

Fourth
shares

A 1 x+ 1 2 3 4 5
0 3x+ 0 3 6 9 10

B 0 4x+ 0 4 8 12 16
1 2x+ 1 3 5 7 9

A 1 5x+ 1 6 11 16 21
0 4x+ 0 4 8 12 16

Ax

1 x+ 1 2 3 4 5
1 2x+ 1 3 5 7 9
1 4x+ 1 5 9 13 17

Ay

1 3x+ 1 4 7 10 13
1 5x+ 1 6 11 16 21
1 2x+ 1 3 5 7 9

TABLE 15: Secret-shares of a relation shown in Table 14.

User-side. Suppose that the user wants to search for a symbol B.
The user will first represent B as a unary vector, 〈0, 1〉, and then,
create secret-shares of B, as shown in Table 16.

Vector
values

Polynomials First
shares

Second
shares

Third
shares

Fourth
shares

0 2x+ 0 2 4 6 8
1 x+ 1 2 3 4 5

TABLE 16: Secret-shares of a vector 〈0, 1〉, created by the
user/querier.

Server-side. Each server executes the count query, as mentioned
in §5, and the functions f1 and f2.

op1 = f1(x) =
∑i=n
i=1 (S(xi)⊗ oi)

op2 = op1 + f2(y) = op1 +
∑i=n
i=1 f2(S(yi)⊗ (1− oi))

The function f1 (and f2) multiplies the ith value of the Ax
(and Ay) attribute by the ith string-matching resultant (and by the
complement of the ith string-matching resultant). Each server i
(1 ≤ i ≤ 4) sends the following three things: (i) the result of the
count query 〈result〉i, (ii) the outputs of the function f1: 〈op1〉i,
and (iii) the sum of outputs of the function f1 and f2: 〈op2〉i, to
the user. Tables 17 - 20 show the working of servers over secret-
shares.
User-side. The user interpolates the received values from each
server, which result in Iresult , Iop1, and Iop2, as follows:

Iresult =
(x−2)(x−3)(x−4)
(1−2)(1−3)(1−4)

× 44 +
(x−1)(x−3)(x−4)
(2−1)(2−3)(2−4)

× 145+
(x−1)(x−2)(x−4)
(3−1)(3−2)(3−4)

× 304 +
(x−1)(x−2)(x−3)
(4−1)(4−2)(4−3)

× 521 = 1

Iop1 =
(x−2)(x−3)(x−4)
(1−2)(1−3)(1−4)

× 162 +
(x−1)(x−3)(x−4)
(2−1)(2−3)(2−4)

× 937+

Value SMR (o) Function f1 1− o Function f2
A (2, 3) ⊗

(2, 2) = 10
2× 10 = 20 1− 10 = −9 4×−9 = −36

B (4, 3) ⊗
(2, 2) = 14

3× 14 = 42 1 − 14 =
−13

6 × −13 =
−78

A (6, 4) ⊗
(2, 2) = 20

5× 20 = 100 1 − 20 =
−19

3 × −19 =
−57

result1 =
44

〈op1〉1 =
162

〈op2〉1 = −9

TABLE 17: Server 1 execution.

Value SMR (o) Function f1 1− o Function f2
A (3, 6) ⊗

(4, 3) = 30
3× 30 = 90 1 − 30 =

−29
7 × −29 =
−203

B (8, 5) ⊗
(4, 3) = 47

5× 47 = 235 1 − 47 =
−46

11 × −46 =
−506

A (11, 8) ⊗
(4, 3) = 68

9× 68 = 612 1 − 68 =
−67

5 × −67 =
−335

result2 =
145

〈op1〉2 =
937

〈op2〉2 =
−107

TABLE 18: Server 2 execution.

(x−1)(x−2)(x−4)
(3−1)(3−2)(3−4)

× 2812 +
(x−1)(x−2)(x−3)
(4−1)(4−2)(4−3)

× 6273 = 1

Iop2 =
(x−2)(x−3)(x−4)
(1−2)(1−3)(1−4)

×−9 +
(x−1)(x−3)(x−4)
(2−1)(2−3)(2−4)

×−107+
(x−1)(x−2)(x−4)
(3−1)(3−2)(3−4)

×−363 +
(x−1)(x−2)(x−3)
(4−1)(4−2)(4−3)

×−849 = 3

Note that the user obtains: Iresult = Iop1 and Iop2 = n,
where n is the number of tuples in the relation, and it is known
to the user. Thus, it is proved that the servers followed the count
query algorithm.

APPENDIX B
FINDING MAXIMUM OVER DATASETS OUTSOURCED
BY MULTIPLE DB OWNERS

In this section, we explain a method, named MDBMax for the
case when multiple DB owners outsource their data to servers,
e.g., smart meters. Note that for the case of multiple DB owners,
SDBMax method cannot work, as different DB owners do not
share any information for creating OP-SS. We describe MDBMax
for a list, say Ac, having n numbers outsourced by k DB
owners/devices, where k ≤ n.
Data outsourcing. Consider that an ith DB owner wishes to
outsource a number, say v. The ith DB owner creates shares of
v using a secret-sharing mechanism that allows string-matching
operations at the server and sends to the c non-communicating
servers, as described in §3.1. However, note that, here, we do
not outsource numbers using the unary representation, which was
used for other queries in previous sections. In this case, the DB
owner first creates a binary representation of the number and then
creates the shares. Binary representation allows us to execute 2’s
complement-based signbit computation, as follows:
Query execution. MDBMax uses 2’s complement-based signbit
computation for each pair of shares at a server. The server j
considers an ith (1 ≤ i ≤ n) share as the maximum value and
compares the ith share against the remaining n− 1 shares.

Thus, for each number at the ith position, say Vi, the server
j computes the signbit with all the other numbers using 2’s
complement-based subtraction, i.e., signbit(Vi− Vx), x 6= i, and
1 ≤ x, i ≤ n. Recall that the signbit results in 1 of secret-share
form, if Vi < Vx; otherwise, 0. Then, the server j adds all n− 1
signbit values computed for the ith share of the list Ac. Therefore,
after comparing each pair of inputs and adding corresponding n−1
signbit values, the server j has a vector, say vec, of n shares. The
user asks the count query (§5) to find the occurrences of 0 in vec
(it will be clear soon why the user is asking for counting 0) and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 21

Value SMR (o) Function f1 1− o Function f2
A (4, 9) ⊗

(6, 4) = 60
4× 60 = 240 1 − 60 =

−59
10 × −59 =
−590

B (12, 7) ⊗
(6, 4) = 100

7×100 = 600 1 − 100 =
−99

16 × −99 =
−1584

A (16, 12) ⊗
(6, 4) = 144

13 × 44 =
1872

1 − 144 =
−143

7 × −143 =
−1001

result3 =
304

〈op1〉3 =
2812

〈op2〉3 =
−3175

TABLE 19: Server 3 execution.

Value SMR (o) Function f1 1− o Function f2
A (5, 12) ⊗

(8, 5) = 100
5×100 = 500 1 − 100 =

−99
13 × −99 =
−1287

B (16, 9) ⊗
(8, 5) = 173

9 × 173 =
1557

1 − 173 =
−172

21 × −172 =
−3612

A (21, 16) ⊗
(8, 5) = 248

17 × 248 =
4216

1 − 248 =
−247

9 × −247 =
−2223

result4 =
521

〈op1〉4 =
6273

〈op2〉4 =
−7122

TABLE 20: Server 4 execution.

the sum of the values of Ac for which the count query resulted in
1 of secret-shared form.
Example. The following table shows how does the server find the
maximum value without using OP-SS. Note that for the purpose of
explanation, we use cleartext values and computations; however,
the server will perform all operations over secret-shared numbers.
The list Ac contains five numbers: 10, 20, 90, 50, and 90. Note
that the sum of signbit for the maximum value is 0. The server
executes the count query for the value of 0, multiplies the ith

resultant to the ith value of Ac, and sends the sum of the count
query results and the sum of values of Ac after multiplication. The
user receives 2 and 180 as the output of the count and sum queries,
respectively, and so that the user knows the maximum value is 90.

Ac
Signbits Sum of

signbits
String-matching
result

Maximum
value10 20 90 50 90

10 0 1 1 1 1 4 0 0
20 0 0 1 1 1 3 0 0
90 0 0 0 0 0 0 1 90
50 0 0 1 0 1 2 0 0
90 0 0 0 0 0 0 1 90

Answers to the count and sum queries 2 180

Complexities. MDBMax requires n2 comparisons and 2n+ 1 scan
rounds of the list Ac, where the first n rounds are used in
comparing each pair of numbers, other n rounds are used for
adding n − 1 signbits for each number, and one additional round
for executing count and sum queries.
Minimum queries over numbers outsourced by multiple DB
owners. Here, we also compare each pair of numbers. However,
for each number at the ith position, say Vi, we compute the signbit
with all the other numbers using 2’s complement-based subtrac-
tion, as follows: signbit(Vx−Vi), x 6= i, and 1 ≤ x, i ≤ n. As a
result, after adding n− 1 signbits for each number, the minimum
values has 0, and the user asks for the count query for 0 and the
sum of the values of Ac for which the count query resulted in 1 of
secret-shared form.

APPENDIX C
MINIMUM AND TOP-K

In this section, we focus on the minimum and top-k/reverse-top-k
finding algorithms on an attribute, say Ac. Further, we assume that
any value in the attribute Ac appears only once.

Minimum. Consider the following two queries QMin1 (uncondi-
tional minimum) and QMin2 (conditional minimum).

QMin1. select * from Employee where Salary
in (select min(Salary) from Employee)

QMin2. select * from Employee as E1 where
E1.Dept = ’Testing’ and Salary in (select
min(salary) from Employee as E2 where

E2.Dept = ’Testing’)

Here, in short, we explain how to execute these queries on the re-
lations S(R1) and S(R2), since these queries are similar to max-
imum queries §7. To execute an unconditional minimum query,
the user follows the same strategy for solving QMax1 (§7.1);
however, the user asks for the minimum value from the relation
S(R1). First, each server i finds a tuple, say 〈S(tk), S(value)〉i,
where S(tk)i is the kth secret-shared tuple-id (in the attribute
SSTID) and S(value)i is the secret-shared minimum value of
the Ac attribute in the kth tuple. Finally, the server i compares
the tuple-id 〈S(tk)〉i with each kth value of the attribute TID of
S(R1)i and multiplies the resultant by the first m attribute values
of the tuple k. Finally, the server i adds all the values of each m
attribute.

To execute a conditional minimum query, the user operates in
two rounds, like a conditional maximum query; see §7.2. In the
round 1, the user obliviously knows the tuple-ids of the relation
S(R1) satisfying query predicate. In round 2, the user interpolates
the received tuple-ids and sends the desired tuple-ids in cleartext to
the servers. Each server i finds the minimum value of the attribute
Ac in the requested tuple-ids by looking into the attribute CTID of
the relation S(R2)i and results in a tuple, say 〈S(tk), S(value)〉i,
where S(tk)i shows the secret-shared tuple-id (from SSTID
attribute) and S(value)i shows the secret-shared minimum value.
Finally, the server i performs a join operation between all the
tuples of S(R1)i and 〈S(tk), S(value)〉i, as performed when
answering unconditional maximum (QMax1) queries; see §7.1.
Correctness and information leakage. The correctness arguments
and information leakage of a minimum query is similar to maxi-
mum queries.

Top-k. We again consider unconditional and conditional queries
in the case of a top-k query. In both the cases, the user follows
a similar approach, like maximum queries; see §7; however, the
user asks for top-k values instead of the maximum value.
Unconditional top-k query. To retrieve tuples having the top-k
values in the attribute Ac of the relation S(R1)i, the ith server
executes the following steps:

1) On the relation S(R2)i. Since the secret-shared values of
the attribute Ac of the relation S(R2)i are comparable, the
server i finds a set of k tuples, where k tuples have the top-
k values in the attribute Ac. One of the k tuples is denoted by
〈S(t`), S(value)〉i, where S(t`)i is the `th secret-shared tuple-
id (in the attribute SSTID) and S(value)i is the secret-shared
value of the Ac attribute in the jth tuple.

2) On the relation S(R1)i. Now, the server i performs
the join of all the top-k tuples with all the tuples
of the relation S(R1)i by comparing the tuple-
ids (TID attribute’s values) of the relation S(R1)i:∑j=n

j=1 Ap[S(aj)]i × (TID[S(aj)]i ⊗ S(t`)i)
Where 1 ≤ ` ≤ k and p (1 ≤ p ≤ m) is the number of
attributes in the relation R and TID is the tuple-id attribute of
S(R1)i. To say, the server i compares each tuple-id 〈S(t`)〉i
with each jth value of the attribute TID of S(R1)i and
multiplies the resultant by the first m attribute values of the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 22

TID (r) Dept SM result (o) Count (a) x = 1 x = 2

3 Testing 1 1 r × o[1− (signbit(x− 1) + signbit(1− x))] = 3 r × o[1− (signbit(x− 1) + signbit(1− x))] = 0
2 Security 0 1 r × o[1− (signbit(x− 1) + signbit(1− x))] = 0 r × o[1− (signbit(x− 1) + signbit(1− x))] = 0
5 Testing 1 2 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0 r × o[1− (signbit(x− 2) + signbit(2− x))] = 5
4 Design 0 2 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0
1 Design 0 2 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0

6 Design 0 2 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0 r × o[1− (signbit(x− 2) + signbit(2− x))] = 0

Tuple-ids after adding values of the columns 3 5

TABLE 21: Knowing tuple-ids of employees working in testing department.

tuple j. Finally, the server i adds all the values of each m
attribute.

Conditional top-k query. Answering conditional top-k queries
require when all the values of the attribute Ac are unique requires
two communication rounds between the user and the servers, like
a conditional maximum query, see §7.2, as follows:
Round 1. The user obliviously knows the tuple-ids of the relation
S(R1) satisfying the query predicate.
Round 2. The user interpolates the received tuple-ids and sends
the desired tuple-ids in cleartext to the servers. Each server i finds
the top-k values of the attribute Ac in the requested tuple-ids by
looking into the attribute CTID of the relation S(R2)i and results
in a set of k tuples. Now, the server i performs a join operation
between all the tuples of S(R1)i and each of the k tuples of the
relation S(R2), as performed above in answering an unconditional
top-k query.
Note. A reverse-top-k query can also be executed in the same
manner as top-k queries; however, the user asks for the minimum-
k values.

APPENDIX D
METHODS FOR FINDING TUPLE-IDS

A trivial solution for knowing the tuple-ids satisfying a query
predicate is given in §7.2 that transmits n numbers from each
server to the user. In the following method, we allow the adversary
to know an upper bound on the number of tuples, say T , satisfy
the query predicate. The method executes T computations on each
tuple and maintains T variables for each tuple. Thus, the server
performs significant computations, when T is large.

The method. The server creates T columns,15 one for each tuple-
id that satisfies the query predicate, say v. Note that actually we
do not need to create any column during implementation, we need
to have T variables. For the purpose of explanation, we show T
columns. Each column has allocated one of the values from 1 to
T of secret-share form (provided by the user). After an oblivious
computation over each tuple, if there are T occurrences of v,
then each of the T columns will have one of the exact tuple-
id where v occurs. The server executes the following operation:

r × o[1− (signbit(x− a) + signbit(a− x))]
Where r is the tuple-id; o = A`[S(ai)] ⊗ S(v), 1 ≤ i ≤ n,
i.e., the resultant output of matching the predicate v with each
value of the attribute A`; a =

∑i=n
i=1 A`[S(ai)] ⊗ S(v), i.e., the

accumulated counting of the predicate v in the attribute A`; and
x (1 ≤ x ≤ T) is a value of the column, created for storing the
tuple-id.
Details. For rth (1 ≤ r ≤ n) value of the attribute A`, the
server executes counting operations for finding the occurrences of

15. The user either provides an upper bound on the number of tuples that
can satisfy the query predicate or knows the occurrences of the query predicate
by executing the count query.

v in A`. The occurrences of v in the above-mentioned equation is
denoted by a. For each resultant a, the server compares a against
each of the T values using 2’s complement method (as given in
§2). The occurrence of v matches with only one of the T values,
and thus, signbit(x − a) + signbit(a − x) results in 0, i.e., the
difference of signbits of comparing two identical numbers is 0. For
all the other subtraction, it will be either 1 or −1 of secret-share
form. Note that for all the values of T that do not match with a,
the above-mentioned equation will be 0 of secret-share form.

Since for the occurrence of v matching with one of the values
of T , signbit(x − a) + signbit(a − x) results in 0, we subtract
it from 1 to keep 1 on which we can multiply the tuple-id r.
Thus, if the tuple r has v in the attribute A`, the server keeps r
to one of the T columns. It is important to note that if the rth

tuple has v in attribute A` and (r + 1)th tuple do not have v in
attribute A`, the value of accumulated count, a, will be same for
the tuples rth and (r + 1)th . Hence, the server may also keep
the (r + 1)th tuple-id in the same column where it has kept rth

tuple-id. In order to prevent this, we also multiply the result of the
string-matching operation (denoted by o, see the above equation.
Thus, the (r + 1)th tuple-id will not be stored. Finally, the server
performs the addition operations on each T column and sends the
final sum of each column to the user.
Example. Table 21 shows an implementation of tuple-id finding
method in cleartext to know the tuple-ids that have Dept =
Testing; see Figure 6a for Employee relation. Note that for
each row, we perform string-matching operations whose results
are stored in the variable o, and all the occurrences of the query
predicate are stored in the variable a. The user asks the server to
create two columns (T = 2) for keeping tuple-ids.

For the first tuple, the string-matching operation results in
o = 1 and a = 1, since the occurrence of the query predicate
(Testing) matches with the department of the first tuple. The
server computes the signbit (by placing x = 1 and a = 1)
that results in 0, and subtracts it from 1 before multiplying
by r = 3 and o = 1. Hence, the first column keeps the
tuple-id 3. The second column of the first row has 0, since
signbit(2 − 1) + signbit(1 − 2) = 0 + 1 = 1. Note that when
processing the second row, the server finds the signbit of a equals
to the value of the first column, while the second tuple does not
have Testing department. The multiplication of the resultant of
the signbit comparison by omakes the values of the first column 0,
while the second column has 0 too. The server processes the third
tuple like the first tuple. Here, the second column keeps the tuple-
id, since for the second column the current value of accumulated
count a matches with the column number, while the first column
stores 0, due to 1−(signbit(1−2)+signbit(2−1) = 1−(1+0).
The server processes the remaining tuples in a similar manner.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 23

APPENDIX E
IMPACT OF NUMBER OF SHARES

In this section, we discuss the impact of number of shares on query
execution (Experiment 5).

1D-count query. Consider a 1D-count on OK attribute (see
Figure 9). Each OK value needs six digits, which we denote
as: 〈d1, d2, d3, d4, d5, d6〉. In order to evaluate a query predicate
over OK attribute in a 1D-count query, using one round of
communication between the user and the servers, we need at most
thirteen servers/shares, as mentioned in §2.

When using three servers, the computation time at each server
and the user was 81s and 17s, respectively. Here, the servers
can only compare individual digits of each OK value against the
query predicate; they cannot evaluate the entire query predicate
by comparing the entire OK value. Thus, the server sends partial
results corresponding to each digit of OK value to the user. For
each tuple in the result, the user, then, interpolates string-matching
resultant of each digit, multiplies them, and finally, adds 1M
values, resulting in an answer to the count query.

In the case of five shares, each server checks two digits of
each OK value against the query predicate, i.e., the server checks
〈d1, d2〉, 〈d3, d4〉, and 〈d5, d6〉, and sends the partial results to the
user. Note that checking two digits of each OK value requires more
multiplication and modulus operations than using three shares,
and thus, the server computation time increases to 83s. Here, the
user receives a smaller set of partial results, and thus, the user’s
interpolation task reduces. Note that the total time when using
five shares is higher than three shares, since the server performs
more computations. In the case of eleven shares, the computation
time at the server is higher as compared to three and five shares,
since the server is able to check five digits (〈d1, d2, d3, d4, d5〉)
of the query predicate. In the case of fifteen servers, each server
checks the entire predicate, and hence more computation time is
required at the server, due to more multiplication and modulo
operation. However, in the case of fifteen shares, the user pays
only for interpolating one value, which is the answer to the count
query.

2CE-count. Now, consider a 2CE-count query on OK and LN
attributes, where the number of digits in OK and LN were 6 and
1 respectively. In order to execute a 2CE-count query, we need at
most fifteen shares. A 2CE-count query execution time follows a
trend similar to 1D-count query (see Figure 9) except that there
are more number of digits involved. Hence, we skip details here.

3DE-count. 3DE-count queries were executed on OK, PK, and
LN attributes, which have in total 12 digits, hence, we need at
least 25 shares to compute the answer of a 3DE-count query in
one round. Since we use at most fifteen shares, the servers send
the partial results of string-matching, as 1D-count query. The user
interpolates them and obtains the answer at their end. This query
follows a similar trend like 1D-count query; hence, we omit details
here.

1D-sum. Sum queries behave differently than count queries, with
an increasing number of shares. 1D-sum queries include query
predicate on OK attribute, wherein each value has six digits,
which we represent as 〈d1, d2, d3, d4, d5, d6〉. Generally, in a
sum query, if the server does not have enough shares, they need
to communicate with the user, who reduces the degree of the
polynomial of searching predicate attribute, and then, the user
again sends the shares of string-matching resultant to the server.

1D-Count 2CE
Count

3DE
Count

1D-Sum 2CE
Sum

3DE
Sum

UnC-Max
Det

UnC-Max
Tuple-Fetch

Cond-Max
Det

Cond-Max
Tuple-Fetch

0

50

100

150

200

250

Ex
ec

ut
io

n
Ti

m
e(

s)

3
3

3

3

3

3

3

3 3

3

5
5

5

5

5

5

5

5
5

5

11
11

11

11

11

11

11

11
11

11

15
15

15

15

15

15

15

15 15

15

User Processing Time
Server Processing Time

Fig. 9: Impact of the number of shares, using a single threaded
implementation on 32GB RAM, 2.5GHz Intel Xeon CPU.

Afterwards, the server performs sum operations by multiplying
ith secret-shared result with the ith value of desired attribute on
which the user is executing a sum query, and then, the server adds
all the values.

As we increase the number of servers from three to fifteen, the
server computation time increases, due to more computations, like
count 1D-count queries, and the user time decreases. Also, here,
the total time increases when going to three to five shares, like 1D-
count query. However, note that the time when using eleven shares,
in the case of 1D-sum query is higher than five shares, unlike
1D-count query. In the case of eleven shares, the server checks
〈d1, d2, d3, d4, d5〉 and sends their output to reduce the degree of
the polynomial. However, the server does not send the output of
string-matching operation over 〈d6〉 digit. Now, the user creates
five shares of each value after reducing the degree. On receiving
new shares, the server multiplies the ith new share to the output
of 〈d6〉 digit string-matching, whose resultant is multiplied by ith

share of the attribute on which the sum operation is carried out.
Note that after this multiplication, the degree of the polynomial
is four; thus, the user sent five shares to recover the secret value.
Note that while user time is almost same when using five or eleven
shares, the server time is higher in the case of eleven shares, since
the server is matching almost the entire query predicate, except
the last digit. Thus, the server time in the case of eleven shares is
higher than five shares. In the case of fifteen shares, the user time
is minimum, since servers sends the final answer to the sum query,
while server time is maximum.

2CE-sum query. Now, consider a 2CE-sum query on OK and LN
attributes, where the number of digits in OK and LN were six and
one, respectively. In order to execute this 2CE-sum query, we need
at most fifteen shares. A 2CE-sum query execution time follows
a similar trend like of a 1D-sum query (see Figure 9). Hence, we
omit details here.
3DE-sum query. 3DE-sum query is also executed similar to a
1D-sum query; hence, we omit details here.
UnC-Max-Tuple-Fetch query. While retrieving a tuple having the
maximum value for an attribute, say Ac, the server joins two rela-
tions S(R1) and S(R2), based on TID, as mentioned in §7.1. For
both 1M and 6M tuples dataset, each TID consists of seven dig-
its, which we represent as 〈d1, d2, d3, d4, d5, d5, d6, d7〉. When
increasing number of shares from three to fifteen, the server
time increases and the user time decreases, similar to all the
above-mentioned queries. Moreover, in this case, the total time
of computation is decreasing. For this the reason is as follows:

During the join operation, the degree of the polynomial used
to create shares of TID values increases. In order to execute

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING (TKDE); ACCEPTED MARCH 2020. 24

string-matching over TID values and tuple retrieval in one round,
we need at least fifteen and sixteen shares, respectively. Thus,
in our setting, the user needs to reduce the degree of string-
matching resultant and re-generate shares of this to fetch the tuple,
regardless of three, five, eleven, or fifteen shares.

In the case of three shares, the server compares only each digit
and sends partial results to the user. After interpolating the partial
results, which consists of zeros for every tuple except for one, for
each tuple, the user creates three secret-shares of this vector and
sends to the servers to retrieve the desired tuple. This operation
requires interpolating seven shares, and then, generating three new
shares.

In the case of five shares, the server compares and sends partial
results of string-matching over 〈d1, d2〉, 〈d3, d4〉, 〈d5, d6〉 to the
user. Note that the user interpolates three shares and generates five
new shares. Hence, the user time decreases as compared to the
case of three shares.

In the case of eleven shares, each server sends partial results
of string-matching over 〈d1, d2, d3, d4, d5〉 its share, and the user
generates five new shares. Thus, the user time again decreases in
this case. In the case of fifteen servers, each server checks the
entire TID value and sends partial results for degree reduction.
After interpolating the values, the user generates three new secret-
shared files. Thus, the user time again decreases in this case as
compared to eleven servers. In addition, as the servers check more
number of digits in the TID value, their time increases.

Cond-Max-Det. As mentioned in §7.2, finding the maximum value
for conditional query requires at least two rounds of communica-
tion, when having enough shares. For this query, we set query
predicate on OK attribute, which has six digits in every value.
Hence, checking the query predicate on OK values in only one
communication round, requires at least thirteen shares.

In the case of less number of shares (e.g., three, five, or
eleven), the server first checks partial query predicates and sends
results to the user for degree reduction, like 1D-count query.
The user decreases the degree of string-matching resultant and
sends new shares, where the new ith share gets multiplied by
ith value of Index attribute to know the tuple-ids. Finally, the
server sends the resultant to the user. After interpolation, the user
knows the tuple-ids that satisfy the query predicate. Hence, in
the case of three, five, or eleven shares, the user executes the
interpolation operation two times, while in the case of fifteen
shares, the user executes interpolation operation only one time.
Hence, the user computation time reduced when increasing the
number of shares. After knowing tuple-ids, the user asks the
server to find the maximum value in the given tuple-ids using
the relation S(R2), and this operation takes same time regardless
of the number of shares. While increasing the number of shares,
the server computation time increases, as it happened in all above-
mentioned queries.

Cond-Max-Tuple-Fetch. Fetching a tuple having maximum value
according to a conditional query requires two rounds, as stated in
§7.2. The first round at the server is identical to Cond-Max-Det
queries. However, in the second round, the server joins S(R1)
with one of the tuples of S(R2) based on TID attribute of S(R1).
In this query, we set a condition on OK attribute, which requires
six digits to represent a value. Hence, we need at least 2 × 6 +
1 = 13 shares to know the tuple-ids in one communication round.
Further, to get the desired tuple, based on join over TID, that has
seven digits, we need at least sixteen shares (fifteen shares for

string-matching operations (2× 7 + 1 = 15) and one more share
for reconstructing the tuple values).

In the first round, the user interpolates at least twice in the
case of three, five, and eleven shares, and at least once in the
case of fifteen shares to know the tuple-ids. Further, we use at
most fifteen shares in our experiments; hence, the user needs to
reduce the degree at least once, of string-matching resultant in the
second round to get the desired tuple. Thus, user computation time
decreases as the number of shares increases. Further, the server
time decreases, as we increase the number of shares, similar to
other queries.

APPENDIX F
SECURITY PROOF OUTLINE

Now, we provide the security proof outline for OBSCURE. In
our context, we, first, need to show that an adversary cannot
distinguish any two queries of the same type based on the output
size, i.e., the query/user privacy will be maintained. Once we can
prove the query privacy, we will show how the server privacy (i.e.,
not revealing more information to the user) is achieved.

Theorem 1 If the adversarial cloud can distinguish two input
queries, then either the random polynomials used for creating
shares of a query is not correct or OBSCURE does not provide
query privacy.

In order to show that the adversary can never know the exact query
value, we consider two instances of the datasets, as follows: D1

and D2, where D1 differs from D2 only at one value each, say
v1 and v2, i.e., v1 is in D1 but D2 and v2 is in D2 but D1. Here,
we show that if the adversary can distinguish the single different
value in D1 and D2, she can break OBSCURE. In this setting, the
server executes the input queries on D1 and D2.

By our assumption of ciphertext indistinguishability (men-
tioned in §3.3), the adversary cannot distinguish that D1 and D2

are identical or different. Note that if the DB owner uses only one
polynomial (i.e., a weak cryptographic plan), then the adversary
can find which value is the only single values of D1 that is
different from values of D2. Moreover, it reveals frequency-count
of values.

Now assume the queries for the value v1 and v2 that will be
mapped to secret-shared queries, qv1(D1) and qv1(D2), respec-
tively. Further, assume that qv1(D1) and qv2(D2) are identical.
Hence, the adversary will consider both of them as an identical
query, while they are for different queries. Hence, the adversary
cannot distinguish two queries. Now, assume that qv1(D1) and
qv2(D2) are different, and here the adversary objective is to
deduce which tuple of relations satisfy the query or not. If the ad-
versary cannot know which tuple is satisfying the query or not, the
adversary can distinguish two queries, as well as, the two datasets.
This violates our assumption of ciphertext indistinguishability of
the dataset. Thus, the adversary cannot distinguish two datasets or
two queries.

Now, we provide an intuition that how does the server privacy
is maintained. Recall that we assumed a trusted user. In response to
a query, the user obtains some numbers. Since the servers cannot
distinguish between two queries and they follow the algorithm on
the entire dataset, the server sends only the desired answer to the
query.

	1 Introduction
	2 Background
	2.1 Building Blocks
	2.2 Comparison with Existing Work

	3 Preliminary
	3.1 The Model
	3.2 Adversarial Model
	3.3 Security Properties
	3.4 Obscure Overview

	4 Data Outsourcing
	5 Count Query and Verification
	5.1 Verifying Count Query Results

	6 Sum and Average Queries
	6.1 Result Verification of Sum Queries

	7 Maximum Query
	7.1 Unconditional Maximum Query
	7.2 Conditional Maximum Query
	7.3 Verification of Maximum Query

	8 Other Operations
	8.1 Multiple Occurrences of the Maximum Value
	8.2 Group-by Query
	8.3 Bucketization-based Range Queries

	9 Experiments
	9.1 Obscure Evaluation
	9.2 Comparing with Other Works

	10 Conclusion
	References
	Biographies
	Peeyush Gupta
	Yin Li
	Sharad Mehrotra
	Nisha Panwar
	Shantanu Sharma

	Appendix A: Count Query Verification over Secret-Shared Values
	Appendix B: Finding Maximum over Datasets Outsourced by Multiple DB Owners
	Appendix C: Minimum and Top-k
	Appendix D: Methods for Finding Tuple-Ids
	Appendix E: Impact of Number of Shares
	Appendix F: Security Proof Outline

