
IoT Expunge: Implementing Verifiable Retention of IoT Data∗

Nisha Panwar,1,2 Shantanu Sharma,2 Peeyush Gupta,2 Dhrubajyoti Ghosh,2 Sharad Mehrotra,2 and
Nalini Venkatasubramanian2

1Augusta University, USA. 2University of California, Irvine, USA.

ABSTRACT

The growing deployment of Internet of Things (IoT) systems aims
to ease the daily life of end-users by providing several value-added
services. However, IoT systems may capture and store sensitive,
personal data about individuals in the cloud, thereby jeopardizing
user-privacy. Emerging legislation, such as California’s CalOPPA
and GDPR in Europe, support strong privacy laws to protect an
individual’s data in the cloud. One such law relates to strict enforce-
ment of data retention policies. This paper proposes a framework,
entitled IoT Expunge that allows sensor data providers to store the
data in cloud platforms that will ensure enforcement of retention
policies. Additionally, the cloud provider produces verifiable proofs
of its adherence to the retention policies. Experimental results on
a real-world smart building testbed show that IoT Expunge im-
poses minimal overheads to the user to verify the data against data
retention policies.

CCS CONCEPTS

• Security and privacy→ Security protocols; Mobile and wire-
less security; Domain-specific security and privacy architectures; So-
cial aspects of security and privacy.

KEYWORDS

Internet of Things; smart building; user privacy; data deletion;
verification.
ACM Reference Format:

Nisha Panwar,1,2 Shantanu Sharma,2 Peeyush Gupta,2 Dhrubajyoti Ghosh,2
Sharad Mehrotra,2 and Nalini Venkatasubramanian2. 2020. IoT Expunge:
Implementing Verifiable Retention of IoT Data. In Proceedings of the Tenth
ACM Conference on Data and Application Security and Privacy (CODASPY
’20), March 16–18, 2020, New Orleans, LA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3374664.3375737
∗This material is based on research sponsored by DARPA under agreement number
FA8750-16-2-0021. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of DARPA or the U.S. Government. This work is partially
supported by NSF grants 1527536 and 1545071.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7107-0/20/03.
https://doi.org/10.1145/3374664.3375737

1 INTRODUCTION

The emerging Internet of Things (IoT) systems use sensors to create
a digital representation of the state of the physical environments,
individuals immersed in it, and their interactions with the physical
space, as well as, with each other. Such a dynamic state represen-
tation provides a variety of value-added services to end-users and
makes the existing processes (such as temperature control and
knowing people locations) more efficient. While data captured by
sensors is useful for service provisioning, it has significant privacy
implications. Several studies [9, 12, 40] have recently highlighted
how sensor data can lead to unexpected inferences about individu-
als and their behavior. Regulations, such as General Data Protection
Regulation (GDPR) [1], California Online Privacy Protection Act
(CalOPPA) [2], and California Consumer Privacy Act (CCPA) [3],
have imposed several requirements on the organizations in which
they can retain their user data. For instance, GDPR emphasizes
data minimization, both in terms of the volume of the data stored
of an individual and the duration of retainment. It states that per-
sonal data can only be kept for no longer than it is necessary for
the purposes for which it is being processed. Making IoT systems
compliant to such legislation, thus, poses an important challenge
of ensuring that the underlying infrastructure implements data
retention policies.

In this paper, we consider data retention for the use-case where
sensor data providers outsource data to the cloud and provide access
to the data to a variety of service providers that use the sensor data
to provide different services. Examples of such a use-case scenario
can be a cellular provider outsourcing customers’ connectivity data
to cell towers (from which their approximate location can be de-
termined) to the cloud and providing such information to service
providers (via the cloud) that build location-based services [40]
based on such data. Another example could be mapping services
that collect location data of individuals (e.g., via GPS on their mobile
devices) and outsource the collected data to other service providers
(e.g., location-based advertisers). One concrete context driving our
solution is a university-based WiFi system, managed by the Uni-
versity Office of Information Technology (OIT), that collects and
outsources users’ connectivity information in order to allow re-
searchers to build smart space services (see §6 for the details of our
live test-bed, called TIPPERS [27]).

The data retention policy for such scenarios requires the cloud to
delete/expunge the sensor data after a predefined period of time. For
instance, policy for data captured by indoor surveillance cameras at
our university is 4-days (to account for 3-day long weekends during
which the university is closed), and the policy for WiFi connectivity
data (that is often used to track missing/stolen phones by the police)
is set in collaboration with the university police department. IoT
Expunge framework, proposed in this paper, provides a mechanism
for the cloud to produce a proof of deletion, thereby providing a

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

283

https://doi.org/10.1145/3374664.3375737
https://doi.org/10.1145/3374664.3375737


verifiable implementation of the data retention policy. IoT Expunge
enables any third party (whether it be the sensor data provider or
the end-user whose data is captured by the sensors) to verify the
correct implementation of the retention policy, without the use of
a centralized trusted party.

IoT Expunge is not only applicable in the university IoT ap-
plication settings (or similar IoT settings) as we discussed above,
it can also be applied to other use-cases that require us to keep
the data against retention policies in a verifiable manner. For ex-
ample, a vehicle rental system may use the verifiable data deletion
mechanism provided by IoT Expunge. Particularly, rented vehicles
contain an Event Data Recorder (EDR) that captures information
about the itinerary or driving patterns of the drivers. However, a
vehicle might be rented by different drivers at different points of
time. Therefore, the parts of EDR data might belong to different
drivers, who rented the vehicle. However, vehicle rental system
requires that all such data related to a driver must be deleted as
soon as the driver returns the vehicle, and mechanisms to empower
the driver should verify the deletion would significantly enhance
the security and trust of the user.

In this paper, we focus on building a verifiable data retention
model for storing IoT data at the cloud. This problem deals with
three sub-problems: timestamp generation to allocate cryptograph-
ically verifiable timestamp to sensor records/readings (to verify
them later); data state transition to delete the data against the data
retention policies; and attestation to verify the state of sensor data
against the data retention policies.
Contributions. In this paper, we provide:
• A framework to outsource sensor data to the cloud (§4), thereby ser-
vice providers can develop applications using data, while users can
verify the state of data against pre-notified data retention policies.
• A mechanism for allocating cryptographically verifiable timestamp
(§5.1) to sensor records based on one-way accumulators [11].
• A verifiable data deletion/expunge protocol based on memory-
hard functions [6, 18, 19] (§5.2 and §5.3), which do not exploit any
trusted-party to execute verification.
• Performance evaluation (§6) of IoT Expunge on university live
WiFi data collected over 12 months.
Outline of the paper. §2 provides an overview of entities involved
in IoT Expunge, the threat model, the security goals. §3 provides
an overview of cryptographic building blocks, namely one-way
accumulators and memory-hard functions, which will be used in
our protocol development. We begin describing IoT Expunge by re-
stricting it for the case when only a single service provider accesses
the encrypted sensor data from the cloud (§4 and §5).
Full version. In the full version [4] of this paper, we show how
such a model can be extended to support multiple service providers
with different data retention policies.

2 PRELIMINARIES

This section provides the entities involved in IoT Expunge, the
threat model, and security properties.

2.1 Entities

Our model has the following entities: sensor data provider (SDP),
the public cloud, service providers (SP), and users; see Figure 1.

Infrastructure Deployer (IFD, 
e.g., University IT Department)

Users
Service 
Provider

(SP)

Infrastructure

Cloud

Figure 1: Entities in IoT Expunge.

Sensor Data Provider (SDP). SDP (which is the university OIT
department in our use-case; see §1) deploys and owns a network of
p sensors devices (denoted by s1, s2, . . . , sp ), which capture infor-
mation related to users in a space. In providing services, the sensors
capture data related to the user; for instance, a WiFi access-point,
captures the user-device-id (e.g., MAC address), say di , when it gets
connected to the access-point, say at time tk , and it produces a
sensor record denoted by ⟨di , tk , loadk ⟩, where loadk may contain
sensor device id or any other payload information. By the SDP,
sensor records are allocated timestamps that are discretized into
epochs using which data retention policies are specified (as will be
described in §2.2). Before sending the sensor data to the cloud, the
SDP encrypts it non-deterministically [20].
The public cloud. The public cloud stores the encrypted sensor
data received from the SDP. The cloud allows access to encrypted
sensor data to service providers (SPs). Only those SPs that already
have negotiated with the sensor provider about the sensor data
usage, are given the data by the cloud. The data at the cloud remains
accessible to the SPs, until the data expiration time. After this time,
the data is deleted. (We will consider additional access control
policies, wherein different SPs can have differentiated accesses to
data, as an extension in §6 of the full version [4]).
Service Providers (SPs). The SPs access encrypted sensor data
based on their agreement with the SDP from the cloud. In our
running example of university WiFi connectivity data, the SP cor-
responds to the TIPPERS system that accesses WiFi connectivity
data to provide location-based services (see §6.1 for details of the
TIPPERS system). Data provided to an SP is non-deterministically
encrypted, and the SP cannot decrypt the data. However, the SP
contains a secure enclave [14] (which works as a trusted agent of
the SDP) using which the SP can provision services over encrypted
data.1 The SP may request encrypted data from the cloud prior to
the data being deleted.
Users. Let u1,u2, . . . ,um′ be the users who carry m devices (de-
noted by d1,d2, . . . ,dm ), wherem′ ≤ m. Using these devices, users
enjoy services provided by SDP, as well as, by SP. We define a term
user-associated data as follows: let ⟨di , tk , loadk ⟩ be a sensor read-
ing, where di be the ith device-id owned by a user ui . We call the
sensor reading ⟨di , tk , loadk ⟩ as user-associated data with the user
ui .
1Since secure enclave is a trusted agent of SDP, it can decrypt and compute over encrypted data.
There are challenges in computing using enclaves due to side-channel attacks, e.g., cache-line,
branch shadow, page-fault attacks [42], but since the focus of this paper is on implementing data
retention policies, we do not address those challenges in this paper.

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

284



1AM

1AM 2AM

1AM 2AM 3AM

1AM 2AM 3AM 4AM

1AM 2AM 3AM 4AM

1AM 2AM 3AM 4AM

5AM

5AM 6AM
Epoch - not available for verification Deleted epoch

T1

T1

T1

T1

T1

T1

T2

T2

T2

T2

T2 T3

T3

T3

T3 T4

T4

T4

T5

T5 T6

Figure 2: An example illustrating the data retention policy.

2.2 Data Retention Policy

A data retention policy specifies the duration of time for which
a cloud can store the sensor data. We model the data retention
policy using the concept of epochs. In particular, timestamps are
discretized into epochs using which data retention policies are
specified. An epoch, denoted by Ti , is identified as a range of time
[Ti .bt,Ti .et] based on its begin time (bt) and end time et, and all
sensor readings during that time period are said to belong to that
epoch. There are no gaps between two consecutive epochs, i.e., the
end time of the previous epoch is the same as the begin time of
the next epoch. Thus, we can identify each epoch by its beginning
time Ti .bt. For simplicity, we will assume that each epoch is of an
equal duration, i.e., ∀i, j, (Ti .et − Ti .bt = Tj .et − Tj .bt). We refer
to the duration of an epoch Ti as: ∆ = Ti .et −Tj .bt. At any given
time t , we refer to the epoch to which t belongs as Epoch(t), i.e.,
Epoch(t).bt ≤ t ≤ Epoch(t).et.

We model a data retention policy as a pair ⟨Pdel ,Pver ⟩, where
Pdel corresponds to the number of epochs after which the data must
be deleted, and Pver corresponds to the number of epochs until
which the cloud must support mechanisms to verify the deletion
(the value of Pver can be set of infinity). After Pver epochs, the
deleted data cannot be verified, since it might be removed from
the storage.2 More formally, assume a sensor data generated at
time t , which belongs to an epoch, denoted by Epoch(t). Such a
sensor data must be deleted by the cloud at the beginning of an
epoch whose begin time is Epoch(t).et +Pdel ×∆. Furthermore, the
cloud must maintain enough information to enable a third party to
verify deletion, until the beginning of epoch whose begin time is
identified by Epoch(t).et + Pver × ∆.
Note: Data States. Based on the data retention policies, the data
can be in one of the two states: accessible and irrecoverable. Prior to
deletion, the sensor data is said to be in an accessible state at the
cloud. A sensor data that has been properly deleted by the cloud is
said to be in an irrecoverable state and cannot be accessed by the
SP. The data that is in irrecoverable state cannot be converted into
an accessible state. The data in both states can be verified by the
user against data retention policy, prior to Pver .
Example: Data retention policy. Figure 2 shows an example of
data arrival, epoch creation, and data deletion. In this example, we
2At present, such policies are used by many cloud providers, e.g., Dropbox, that completely remove
data from the storage media, if a person does not access the data for more than one year.

assume Pdel = 2, Pver = 4, and ∆ = 1. In Figure 2, each dot shows
either the start or end of an epoch.

Note that as the data arrives in the epoch T4, the data of the
epoch T1 is deleted (i.e., the state of data of the epoch T1 becomes
irrecoverable), since Epoch(t).et + Pdel × ∆ = 2 + 2 × 1 = 4, where
t is a time value that belongs to the epoch T1. Similarly, as the data
arrives in the epoch T5, the data of the epoch T2 is deleted, since
Epoch(t).et + Pdel × ∆ = 3 + 2 × 1 = 5, where t is a time value that
belongs to the epoch T2. However, the state of data of the epochs
T1 and T2 still can be verified against the data retention policy.

When the data arrives in the epoch T6, the data of the epoch T1
may not be available for verification, since Epoch(t).et +Pver ×∆ =
2 + 4 × 1 = 6, where t is any time value belongs to the epoch T1.
However, it is important to mention that the data that belongs to
the epoch T1 cannot be converted into the accessible state.

2.3 Threat Model and Security Properties

Threat Model.We assume that SDP and sensor devices are trusted
and are secure. That is, sensors cannot be spoofed and, furthermore,
malicious entities cannot launch an attack against the SDP tomodify
sensor data.3 We do not consider cyber-attacks that can exfiltrate
data from the SDP, since defending against such attacks is outside
the scope of this paper. Also, we assume that except for the SDP
and the secure enclave at the SP, no other entity can learn the secret
key to decrypt the sensor data.

The public cloud is assumed not to be malicious, i.e., it correctly
executes the tasks requested to it by the SP (e.g., request for data)
and by the SDP (e.g., store/delete data based on the data retention
policy).4 However, the cloud is not trusted to delete data correctly
and must support verification for deletion. Such a cloud-based
model is known as trust-but-verify and widely considered in many
cryptographic algorithms [17, 25, 43]. The trust-but-verify model
is motivated by situations (e.g., GDPR), where the cloud provider
wishes to protect itself against spurious litigation about violating
data retention policy by providing verifiable proof of deletion.

We assume that an SP may behave maliciously. As mentioned
before that the SP utilizes sensor data to provide services to the
user, but SP maymimic the user behavior by asking queries to learn
the encrypted sensor data. A user may also behave maliciously
and wishes to learn about the encrypted data during data state
verification against the data retention policies. Note that a user may
also learn about the data by asking queries to the SP about other
users; however, we do not focus on such issues, since our focus is
on the verifying data against the data retention policies.
Security Properties. In the above-mentioned threat model, an
adversary wishes to show that the cloud is not behaving against
the data retention policy. Hence, we need to develop a verification
mechanism that can (i) prove the cloud keeps sensor data according
to the data retention policy, and (ii) prevent any information leakage
about the sensor data during the verification process. Thus, we need
to maintain the following properties in our system:
3We also assume a correct identification of sensors, before accepting sensor-generated data at SDP,
and it ensures that no rogue sensor device can generate the data on behalf of an authentic sensor.
4We assume the existence of an authentication protocol between the SDP and the cloud, so that
the SDP sends the data to a designated cloud. Further, an authentication protocol exist between the
cloud and the SPs, so that the cloud forwards encrypted sensor data to only desired SPs.

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

285



Privacy-Preserving Verification. As the state of the sensor data
changes at the cloud, the cloud should produce a proof to show it
adheres to the data retention policy. The verification/attestation
mechanism must prove that the cloud is executing the desired
(deletion) task, against the data retention policy. However, the veri-
fication process must not reveal any information about other users
to preserve their privacy.
Minimality. The verification process must be communication effi-
cient, in terms of not providing the entire sensor data to the verifier
(to attest the data state). The verification process must request the
minimal amount of the data from the cloud, that is sufficient to
verify the data state for the requested time period.
Immutability. We need to maintain immutability of queries arriv-
ing from the user to verify that the SP is not executing the queries
by mimicking the user. Note that if the SP can alter the query log, it
can execute any query, while no entity can detect such a behavior
of the SP. Thus, having an immutable query log provides a way to
detect malicious behavior of the SP.
Aside. §5.1, §5.2, and §5.3 develop a protocol that ensures privacy-
preserving verification property while maintaining minimality
property. §5.4 provides a protocol to produce immutable query
logs.

2.4 Scoping the Problem

In general, implementing data retention policies on the cloud con-
sists of two complementary tasks: (i) since cloud infrastructure
may consist of several levels of caches, techniques need to be de-
veloped to track all the replicas of data (or data derived from the
original data) and to expunge the data from all the replicas and/or
caches, and (ii) techniques need to be designed to delete data from
the storage media in such a way that the original data cannot be
recovered from the deleted representation. Simply replacing data
by a constant string (e.g., NULL string) or encrypting the data, as
is commonly done today by cloud providers does not suffice, as
shown in [21, 31].

For both the above-mentioned tasks, given the trust-but-verify
model, the cloud will need to support mechanisms for verifica-
tion. We scope the paper to address the above-mentioned second
problem, wherein the cloud supports cryptographic protocols for
verification of deletion from the storage media. Verifiable mech-
anisms to expunge data from caches and/or replicas potentially
requires designing of verifiable data structures that maintain the
links to all the copies of data, which is a significant independent
problem in itself. In the remainder of the paper, we will assume
that data on the cloud exists only on a single storage device, and
our goal is to design methods to verify deletion of data from the
storage, based on data retention policies provided by the SDP.

3 CRYPTOGRAPHIC PRIMITIVES

Before describing IoT Expunge in detail, this section presents a
brief overview of two existing cryptographic techniques, which we
use in building IoT Expunge.
One-way Accumulators. One-way accumulators were proposed
by Benaloh and Mare [11] and are based on RSA assumption [34].
We use the cryptographic RSA-based accumulators to construct a
timestamping protocol that allocates cryptographically verifiable

timestamp to each sensor reading. Here, we provide an overview of
one-way accumulators that satisfy the quasi-commutative property.
A quasi-commutative function f : X × Y → X can be defined as:

f (f (x ,y1),y2) = f (f (x ,y2)y1); ∀x ∈ X , ∀(y1,y2) ∈ Y
Also, the quasi-commutative property is satisfied, if the function

f is replaced by a one-way hash function H . Let us assume that
the hash functionH is initialized with a seed value x and recurrent
values (y1,y2, . . . ,yn ), then the accumulated hash digest is:
z = H(H(H(. . .H(H(H(x ,y1),y2),y3), . . . ,yn−2),yn−1),yn )
The output z will be identical, even when the values

y1,y2, . . . ,yn are permuted, while all hash functions are identical.
As an advantage, the quasi-commutative functions do not require
any central authority during timestamp verification, in our context,
(as well as, provide a space-efficient alternative to digital signa-
tures). To see why a central authority is not required, while using
quasi-commutative functions, consider an example, where n values
y1,y2, . . . ,yn come from n different users, and those values gen-
erate a final accumulated hash digest z. Assume that a user uj is
assigned a partially accumulated hash digest zj with all yi , where
1 ≤ i ≤ n and i , j. The user uj is holding the value yj , can be
verified by checking, if z = H(zj ,yj ). We consider the one-way
accumulators based on RSA assumption [34]. Consider that the RSA
function E(x ,y) = xy mod η underlies the assumption that given
E(x ,y), y, and η, where E is an encryption function; x cannot be
computed in polynomial time. Since recovering x from y is at least
as hard as integer factorization, it can appropriately be used as the
one-way hash functions.
Memory-hard Functions.We propose to use memory-hard func-
tions [6, 13, 18, 19] to delete encrypted sensor data at the cloud,
during state transition phase. The memory-hard functions5 exe-
cute a series of computations on the input value, such that each
computation step in the series is tied with the computation at the
previous step. Thus, the way of computing the final answer shows
the inability to compute the output using some locally stored in-
termediate values, rather than the initial value. The final answer
to these memory-intensive functions is pre-computed and serves
verification purposes. Specifically, in memory-hard functions, the
verifier selects a pair ⟨d,a⟩, where d denotes the difficulty level of
the function and a denotes the correct answer to the function. The
prover must solve the function on the input by executing d steps
of an assigned computation and must generate a solution, which
should match with a. Note that such a computation cannot be paral-
lelized and, thus, achieves the verifiable time-space trade-off during
the computation [16]. Memory-hard functions have been, also, used
in different scenarios, such as verifying the number of replicas of
the data by using shortcut-free functions [24] and verifying the
encrypted data at the cloud using hourglass functions [41].

4 IOT EXPUNGE — DATAFLOW

This section presents a brief overview of different phases involved
in IoT Expunge and dataflow among different entities; see Figure 3:
Control phase: Dataflow from sensors to the SDP and the

SDP to the cloud. The SDP is equipped with a timestamping server
5Our approach is independent of any particular memory-hard function. In fact, any
function that allows verification of deletion based on policies can be used in IoT
Expunge.

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

286



Sensor Data 
Provider

(SDP)

Cloud

Trusted Untrusted

Encrypted
WiFi Sensor

Data

User

Secured 
query logs

2

4

3
Timestamping 

server
1

1 1

Verifiable
Tags

Data 
Retention 
Policies

SGX
Query Log 

Creator

s

1

5

7
Service 

Provider

6

Figure 3: Dataflow and computation in the protocol. Trusted

parts are shown in shaded boxes.

that collects all sensor readings/records ( 1 ). The timestamping
server partitions the timeline into multiple epochs having a range
of time [Ti .bt, Ti .et], where bt and et denote the begin time and
end time, respectively, of the epoch Ti . The timestamping server
allocates the same epoch-id (Ti ) to all sensor readings that belong
to the epochTi having the time range [Ti .bt, Ti .et]. The timestamp-
ing server, also, appends a cryptographic timestamp, denoted by
CT . Further, the SDP generates verifiable tags. Cryptographic time
and verifiable tags are used to attest the data state (accessible and
irrecoverable). The SDP outsources following to the cloud ( 2 ): (i)
encrypted sensor data, (ii) verifiable tags, (iii) a list of SPs who can
access the encrypted data, and (iv) data retention policies. The SDP
may keep sensor data in cleartext or in encrypted form. This phase
is entitled control phase (see §5.1 for details).
State transition phase: Dataflow from the cloud to the SP.

The cloud stores the data received from the SDP. As mentioned
previously that we will, first, build IoT Expunge for only a single SP
(in §5), in which case the data can reside in accessible and irrecover-
able states. The sensor data in accessible state can be accessed by
all SPs. The sensor data in irrecoverable state cannot be accessed
by all SPs. The cloud converts the data state against data retention
policies and generates verifiable proofs to show that it adheres to
the data retention policies. This phase is entitled state transition
phase (see §5.2 for details). Further, the cloud sends encrypted data
to all the designated SPs ( 3 ).
Attestation phase: Dataflow from the cloud to the users.

Users wish to verify the state of their encrypted sensor data at
the cloud against data retention policies. Thus, the cloud sends
the verifiable tags corresponding to the desired epoch ( 4 ), using
which the user verifies her/his data, without involving in a heavy
computation at their end. This phase is entitled attestation phase
(see §5.3 for details). Further, the SDP can also verify the data state.
Query logging phase: Dataflow from the user to the SP. The
SP stores encrypted sensor data ( 3 ), received from the cloud. For
building services, the SP has the secure enclave (Intel Software
Guard eXtension, SGX [14]) that works as a trusted agent of the SDP.
The secure enclave receives the digitally signed user queries ( 5 )
and provides answers after decrypting the data inside the enclave
and processing the sensor data ( 6 ). On receiving a query, the
enclave stores the query and the identity of the user with its digital

signature on the disk in a secure and tamper-proof manner, to
prevent the SP to execute a query by impersonating a real user ( 7 ).
This phase is entitled query logging phase (see §5.4 for details).

5 IOT EXPUNGE — THE PROTOCOLS

This section provides details of IoT Expunge for the case where
only one SP exists, and the state of encrypted sensor data at the
cloud changes from accessible to irrecoverable. Figure 4 shows
a complete execution of IoT Expunge protocol over four sensor
readings.
Preliminary phases: Key distribution, user-device registra-

tion, and data retention policy broadcast: Before using IoT Ex-
punge, there is a need of executing the following preliminary steps:
Key distribution phase. We assume a key distribution phase that
distributes public keys (PK) and private keys (PR). The trusted
SDP (which is the university IT department in our setup of the
TIPPERS system) generates/renews/revokes keys used by the secure
(hardware) enclave (denoted by ⟨PKE , PRE ⟩). The SDP uses PKE to
encrypt sensor readings before sending them to the cloud.6 PRE is
used by the enclave to decrypt sensor readings. The public key and
private key of the SDP are denoted by PKSDP and PRSDP , respectively.
Further, the SDP shares an identical symmetric key with all users,
say K , which is used to securely encrypt the verifiable proof/tag
for deletion process.
User device registration. We also assume a registration process,
thereby a user device registers itself to the SDP and the SP. For
instance, in the radio-frequency identification (RFID) card system,
users are identified by their RFID card, and the registration process
consists of users providing the details of their cards and other iden-
tifiable information (e.g., email address or phone number). In the
case of a WiFi network, users are identified by their mobile devices,
and the registration process consists of users providing the MAC
addresses of their devices and other identifiable information.
Data retention policy broadcast. We assume that when SDP estab-
lishes a new data retention policy, it informs about it to all registered
users using their provided email addresses or phone numbers, as
well as, to the cloud. Also, SDP informs the hash function to the
user and the cloud, which was used in the control phase by the
SDP.

5.1 Control Phase

The control phase (see Algorithm 1) is the first phase of IoT Ex-
punge, where the SDP receives sensor records. The objective of this
phase is to: (i) partition the timeline into multiple epochs where
each epoch consists of same duration of time7 (Stage 1), (ii) allo-
cate an epoch-id and a cryptographic time to each sensor records
belonging to the same epoch (Stage 2 and Stage 3), thereby the
verifier can later verify the state of sensor readings in the dataset
against the data retention policy; (iii) encrypt sensor data before
outsourcing to the cloud (Stage 4). To achieve these objectives, the
control phase contains four different stages, as follows:
6Following the existing frameworks [7], the sensor devices may itself generate an encrypted sensor
data that can be decrypted by SDP for executing control phase. However, we do not consider such
a model in this paper.
7For simplicity, we consider that the duration of each epoch is same.

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

287



ଵݎ = ݀ଵ, ,ଵݐ ଶݎଵ݈݀ܽ = ݀ଶ, ,ଶݐ ଷݎଶ݈݀ܽ = ݀ଷ, ,ଷݐ ସݎଷ݈݀ܽ = ݀ସ, ,ସݐ ସ݈݀ܽ

ܦܫܧ Hash ࣮ࣝ Sensor Readingଵܶ ℎଵଵ ࣝ ଵ࣮ ℇ(ݎଵ)ଵܶ ℎଵଶ ࣝ ଵ࣮ ℇ(ݎଶ)ଶܶ ℎଶଵ ࣝ ଶ࣮ ℇ(ݎଷ)ଶܶ ℎଶଶ ࣝ ଶ࣮ ℇ(ݎସ)
ଶܶ,ଶܶ,ଶܶ,

ℎଶଵ,ℎଶଶ,ℰࣥ ࣝ ଶ࣮ ,
ࣝ ଶ࣮,ࣝ ଶ࣮, ℇ(ݎଷ)ℇ(ݎସ)ℰࣥ(ܽܪଶ), ℰࣥ(݅ܪݎଶ)

ଶܪܽ ← [(ଶܪܽ)ℰࣥ]ݐݕݎܿ݁ܦ
ℎଵ ← ℋ ݀ଶ, ଶܶ, 1 ? ℎଶଵℎଶ ← ℋ ݀ଶ, ଶܶ, 2 ? ℎଶଶߙ ← ࣝ ଵ࣮ ℋ(భ||మ) ݀݉ ߟ ? ࣝ ଶ࣮
ℋ ℇ ଷݎ ||ℇ(ݎସ) ? ଶܪܽ

Computation

Received inputs

SensorData Relation

MetaData Relation

User (Verifier)
Attestation phase execution

The Public CloudSensor Data Provider (SDP)
Control phase execution

ܦܫܧ Hash digest ࣮ࣝ Sensor Readingଵܶ ℎଵଵ ← ℋ(݀ଵ, ଵܶ, 1) ࣝ ଵ࣮ ℇ(ݎଵ) ← ℰ(ݎଵ, ଵܶ)ଵܶ ℎଵଶ ← ℋ(݀ଶ, ଵܶ, 2) ࣝ ଵ࣮ ℇ(ݎଶ) ← ℰ(ݎଶ, ଵܶ)ଶܶ ℎଶଵ ← ℋ(݀ଷ, ଶܶ, 1) ࣝ ଶ࣮ ℇ(ݎଷ) ← ℰ(ݎଷ, ଶܶ)ଶܶ ℎଶଶ ← ℋ(݀ସ, ଶܶ, 2) ࣝ ଶ࣮ ℇ(ݎସ) ← ℰ(ݎସ, ଶܶ)
ܦܫܧ Range ࣮ࣝ Verifiable Tagsଵܶ ଵݐ - ଶݐ ℰࣥ(ࣝ ଵ࣮) ℰࣥ(ܽܪଵ) ℰࣥ(݅ܪݎଵ)ଶܶ ଷݐ - ସݐ ℰࣥ(ࣝ ଶ࣮) ℰࣥ(ܽܪଶ) ℰࣥ(݅ܪݎଶ)

ܦܫܧ Range ࣮ࣝ Verifiable Tagsଵܶ ଵݐ - ଶݐ ℰࣥ(ࣝ ଵ࣮) ℰࣥ(ܽܪଵ) ℰࣥ(݅ܪݎଵ)ଶܶ ଷݐ - ସݐ ℰࣥ(ࣝ ଶ࣮) ℰࣥ(ܽܪଶ) ℰࣥ(݅ܪݎଶ)

Figure 4: IoT Expunge protocol execution.

A user wishes to verify his/her data at time t3. Notations: EID: Epoch-id, Range: Begin/end time of an epoch, CT 1 ← xH(h
1
1 | |h

2
1),

CT 2 ← CTH(h
1
2 | |h

2
2), and ?: Comparing values.

Stage 1: Epoch creation. The first stage finds an appropriate
epoch duration. Recall that an epoch Ti consists of a time range
of [Ti .bt, Ti .et], based on which sensor readings having the time
in this range belong to the epoch Ti . Each epoch is allocated an
epoch-id, which is the begin time of the epoch. In this paper, we
denote an epoch-id by Ti , instead of Ti .bt to simplify the notation.

The duration of an epoch impacts the following: the number
of sensor records in the epoch, the communication cost between
the cloud and a verifier, and the execution time of the attestation
phase. Particularly, as the epoch duration increases, several sensor
records are allocated to a single epoch (under the assumption that
the arrival rate of sensor readings is uniform). Thus, in turn, as will
be clear in §5.3 and §6, verifying a sensor record belonging to an
epoch with a longer duration requires more (verification) time and
communication cost (due to the data movement between the cloud
and the verifier, during the attestation phase).

Aside. IoT sensor data may be generated at a different velocity
at different time. For example, in the case of WiFi connectivity data
arriving from an access-point associated with a building, several
sensor readings are produced at fast speed in daytime, compared
to WiFi data arriving from the same access-point in the nighttime.
Our method can also deal with such a case, by creating epochs of
different lengths of duration.
Stage 2: Time allocation (Lines 2-6 of Algorithm 1). All the
sensor readings that belong to the same epoch are allocated a single
cryptographic timestamp, which is generated using the one-way
accumulator [11]. In the following, we explain the steps in detail:
Step 1: Initialization. Initially, a seed value x is generated using a
pseudo-random number generating (PRG) function. Also, two large
prime numbers p and q are generated as private values of the one-
way accumulator, such that η = p × q. Both the values x and η are
public values.
Step 2: Cryptographic timestamp generation. Based on the crypto-
graphic timestamp, we create a chain of timestamps using the
one-way accumulator. Below, we explain the procedure for two
successive epochs:

Cryptographic timestamp generation for the first epoch. Consider
that the first epoch has n sensor readings that have allocated the
epoch-id T1. To generate the cryptographic time, say CT 1, for the
first epoch, we first compute hash digests, for each sensor reading
by executing a hash function,H , over each device-id, the epoch-id,
and a counter variable (1 to n), as follows (Line 2 of Algorithm 1):
h11 ←H(di ,T1, 1), h

2
1 ←H(dj ,T1, 2), . . ., h

n
1 ←H(dk ,T1,n)

Where hji denotes the hash digest for the jth sensor reading of
the ith epoch, and di , dj , dk are user-device-ids associated with
the first, second, and the nth sensor readings. Note that each hash
digest will be different; hence, any adversarial entity cannot learn
anything about the device behavior in the epoch. Then, we compute
the cryptographic time CT 1, which is allocated to all the n sensor
readings of the epoch, as follows (Line 6 of Algorithm 1):

CT 1 ← [xH(h
1
1 | |h

2
1 | |... | |h

n
1 )] mod η

Cryptographic timestamp generation for the second epoch. Consider
that the second epoch has n′ sensor readings that have allocated
the epoch-id, say T5. To generate the cryptographic time, say CT 2,
for the second epoch, we compute hash digests, as we computed
for the previous epoch:
h12 ←H(di ,T5, 1), h

2
2 ←H(dj ,T5, 2), . . ., h

n′
2 ←H(dk ,T5,n

′)

Then, we compute the cryptographic time, CT 2, which is allo-
cated to all the n′ sensor readings, of the epoch, as follows (Line 5):

CT 2 ← [CT
H(h1

2 | |h
2
2 | |... | |h

n′
2 )

1 ] mod η
Note that here the cryptographic time CT 2 is computed by

using the cryptographic time CT 1, which was computed for the
first epoch. In a similar way, we can compute the cryptographic
time for the third epoch and other epochs too (Line 5).

Note that using the hash digest, verifiers can attest member-
ship (absence/presence) of their sensor records in the epoch,
and using the cryptographic timestamp, verifiers can attest
the completeness of all hash digests produced during the
epoch; (will be clear soon in §5.3).

Stage 3: Verifiable tags generation (Lines 7-10 of Algo-

rithm 1). As mentioned at the beginning of this section that the

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

288



Algorithm 1: Control phase.
Inputs: Sensor reading r j = (dj , tj , loadj ), where j ∈ {1,n}.
Epoch: Ti .
Public values: x and η. Hash function:H . Public key of the
enclave: PKE . Encryption function: E.

Outputs: Relations SensorData and MetaData
1 Function Control_phase(r j ) begin
2 for j ∈ {1,n} ∧ j ∈ Ti do

3 h
j
i = H(dj ,Ti , j)

4 for ∀Ti , i > 0, do
5 if ¬T1 then CT i ← CT

H(h1
i | |h

2
i | |... | |h

n
i )

i−1 mod η
6 else CT 1 ← xH(h

1
1 | |h

2
1 | |... | |h

n
1 )

7 for j ∈ {1,n} ∧ j ∈ Ti do

8 EPKE (r j ) ← EPKE (dj , tj , loadj ,Tj )

9 aHi ←H[EPKE (r j )] j ∈ {1,n}
10 irHi ←H(Encrypted deleted rows after simulating

deletion on EPKE (r j )): j ∈ {1,n})
11 Outsource SensorData← ⟨Ti ,hji ,CT i , EPKE (r j )⟩ where

j ∈ {1,n}
12 Outsource MetaData

← ⟨Ti , Ti .bt, Ti .et, EK (CT i ), EK (aHi ), EK (irHi )⟩

state of encrypted sensor data changes from accessible to irrecov-
erable. The SDP generates verifiable tags for each epoch, thereby a
verifier (user/SDP) can verify the data state against data retention
policies.

Below, we explain how the SDP produces verifiable tags for an
epoch having n sensor readings, denoted by r1 = {d1, t1, load1,T1},
r2 = {d2, t2, load2,T1}, . . . , rn = {dn , tn , loadn ,T1}, where ri de-
notes ith sensor reading; di , ti , loadi denote the ith user device, ith
sensor time, and ith payload in the ith sensor reading; and T1 de-
notes the epoch-id. Now, the verifiable tags for this epoch will be
computed as follows:
Step 1: Encryption of the sensor records (Line 7).Wefirst encrypt the
sensor readings r1, r2, . . . rn using the public key of the enclave, de-
note by EPKE (r1), EPKE (r2), . . . ,EPKE (rn ). For simplicity, from here
on, we use the notation E(r j ) to denote EPKE (r j ), unless explicitly
mentioned.
Step 2: Hash of encrypted data (Line 9). Now, we compute a hash
function, H , over the encrypted sensor readings: aH1 ←

H[E(r1)| |E(r2)| | . . . | |E(rn )], where aHi denotes the hash digest
for accessible state data of the epoch i .
Step 3: Simulate data deletion and compute hash digest (Line 10). Fi-
nally, SDP simulates the deletion process (described below) on the
encrypted sensor readings E(r1), E(r2), . . . E(rn ), computes a hash
function on the output of the deletion process, and it results in a
hash digest, denoted by irHi , to indicate the hash digest for irrecov-
erable state data of the epoch i .

Note that after knowing the membership of sensor data in
an epoch, the verifier can attest the current state of all the
sensor readings in the epoch using the verifiable tags.

Algorithm 2: State transition phase.
Inputs: Ti , r j ∈ Ti , where j ∈ {1,n}, Memory-hard function:
H

Outputs: Deleted sensor readings of Ti
Variable initialization: Temp_array[], iteration← logn,
stepSize← 1, blockSize← 2, currIndexCount ← 0, temp1,
temp2.

1 Function Function_delete(Ti ) begin
2 for k ∈ {1, iteration} do

3 while currIndexCount ≤ n do

4 while

ℓ ∈ {currIndexCount, currIndexCount+blockSize}
do

5 temp1 = Ti [rℓ], temp2 = Ti [rℓ+stepSize ]
6 value ← temp1 H temp2
7 Temp_array[ℓ] ← value

8 Temp_array[ℓ + stepSize] ← value;
9 ℓ ← ℓ + 1

10 if (ℓ + stepSize = currIndexCount + blockSize)
then break

11 currIndexCount ← currIndexCount + blockSize

12 Ti ← Temp_array
13 blockSize← blockSize × 2
14 stepSize← stepSize × 2
15 Proofi ←H(r j ), where j ∈ {1,n}
16 Write deleted sensor readings r j (j ∈ {1,n}) of the epoch

Ti and Proofi on the disk

Stage 4: Outsourcing data (Lines 11-12 of Algorithm 1).Now,
the SDP has encrypted sensor readings of an epoch having the
epoch-id Ti , cryptographic timestamp, and verifiable tags aHi and
irHi . All such information is outsourced to the public cloud in
the form of two relations: (i) the first relation, called SensorData,
contains the epoch-id Ti , hash digests for each sensor reading hyi
(wherey is the number sensor readings in the epoch), cryptographic
timestamp, and sensor readings encrypted using the public key of
the secure enclave (PKE ); and (ii) another relation, called MetaData
having the epoch-id, epoch begin/end time, cryptographic times-
tamp, and verifiable tags (aHi and irHi ). The SDP encrypts all fields
of the MetaData relation using the key K , except for epoch-id and
epoch begin/end time.

5.2 State Transition Phase

In this phase, the sensor data belonging to an epoch is deleted,
based on the data retention policy. Recall that (as mentioned in
§2.4) if data is replaced by null strings, then it can be recovered, as
shown in [21, 31]. Our proposed verifiable data deletion method
(see Algorithm 2) guarantees the irrecoverability of the data by
implementing a memory-hard function, provided by the SDP.
Step 1: Selection of the epoch on which the deletion algorithm
will be executed. As mentioned in §2.2, all sensor readings belong-
ing to an epoch Ti are deleted by the cloud at the beginning of an
epoch whose begin time is Ti .et + Pdel × ∆, where Ti .et is the end
time of the epoch Ti , Pdel corresponds to the number of epochs

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

289



Inputs

Iteration 1

Iteration 2

Iteration 3
Final deleted
outputs

Figure 5: An illustration of delete algorithm execution.

after which the data must be deleted, and ∆ is the duration of the
epoch.
Step 2: Deleting sensor reading (Lines 1-14). Suppose that in an
epoch Ti , n sensor records are needed to be deleted. The deletion
function executes a cryptographic memory-hard function, denoted
by H 8 on all the n sensor readings in logn number of iterations
and produces the final output in such a way that the original n
sensor readings cannot be obtained from the output.

We explain the deletion steps with the help of an example, where
an epoch Ti contains eight sensor records that need to be deleted.
Algorithm 2 shows pseudocode of the deletion method, and the exe-
cution pattern of the algorithm is shown in Figure 5. In Algorithm 2,
Lines 1-14 will be executed logn = log 8 = 3 times for the case
of deleting eight sensor readings. The deletion algorithm divides
the initial array of eight sensor readings into four blocks, where
each block contains two sensor readings. Thus, the computation
H is performed on each block having the following sensor records:
⟨r1, r2⟩, ⟨r3, r4⟩, ⟨r5, r6⟩, ⟨r7, r8⟩ (according to the while-loop start-
ing from Line 4). The newly computed sensor records are stored in
a temporary array of length n (as shown in Lines 7, 8). Thus, at the
end of the first iteration, we obtain the following sensor records:
⟨r11 , r

1
2 ⟩, ⟨r

1
3 , r

1
4 ⟩, ⟨r

1
5 , r

1
6 ⟩, and ⟨r

1
7 , r

1
8 ⟩. At the end of each iterations,

we increase the block size and the step size (i.e., a variable that is
used to create a pair of sensor readings) by an order of two (see
Lines 13-14). Further, at the end of each iteration, all the sensor
readings of the epoch Ti are overwritten by the newly computed
sensor readings (see Line 12).

In the second iteration, according to Line 4, the function is
executed over the sensor records: ⟨r11 , r

1
3 ⟩, ⟨r

1
2 , r

1
4 ⟩, ⟨r

1
5 , r

1
7 ⟩, and

⟨r16 , r
1
8 ⟩, and produces the sensor records: ⟨r21 , r

2
2 ⟩, ⟨r

2
3 , r

2
4 ⟩, ⟨r

2
5 , r

2
6 ⟩,

and ⟨r27 , r
2
8 ⟩. In the third iteration, the function is executed over the

sensor records: ⟨r21 , r
2
5 ⟩, ⟨r

2
2 , r

2
6 ⟩, ⟨r

2
3 , r

2
7 ⟩, and ⟨r

2
4 , r

2
8 ⟩, and produces

the following sensor records as final output on which a hash func-
tion is executed to generate a proof of deletion: ⟨r31 , r

3
2 ⟩, ⟨r

3
3 , r

3
4 ⟩,

⟨r35 , r
3
6 ⟩, and ⟨r

3
7 , r

3
8 ⟩.

Step 3: Computing a hash function to generate a proof of deletion
(Lines 15-16). After executing step 2 on all the required sensor
readings of the epoch Ti , the cloud executes a hash function on the
outputs of step 2, and it produces a proof, Proofi , of deletion. This
proof is sent to the verifier during the attestation phase.
8For simplicity, we considered the one-way hash function, H for the construction of memory-hard
function.

Algorithm 3: Attestation phase.
Inputs: User device du , Epoch Tj , hash digests hyj , EPKE (ry ),
1 ≤ y ≤ n, CT j , CT j−1, EK (CT j ), EK (aHj )
Hash function:H . Public values: x and η. Decrypt(): A
decryption function

1 Function Verify(EPKE (ry )) begin
2 for y ∈ {1,n} do

3 hy ←H(du ,Tj ,y)

4 if hy = h
y
j then The user-associated data exists in

the epoch Tj
5 else The user-associated data does not exist in the

epoch Tj
6 if Tj ∧ j = 1 then α ← [xH(h

1 | |h2 | |... | |hn )] mod η
7 else α ← [CT

H(h1 | |h2 | |... | |hn )
j−1 ] mod η

8 if α = CT j then The verifier has received all sensor
records belonging to the desired epoch Tj

9 aHj ← Decrypt[EK (aHj )]
10 uH ←H[EPKE (ry )] : y ∈ {1,n}
11 if uH = aHj = Data retention policy then

Sensor readings are in accessible state, and the cloud is
keeping the data against the data retention policy

Note. Unless the cloud executes the deletion method (Algorithm 2),
there is no value that can produce the proof of deletion that should
also match with the verifiable tag, irH , which was already produced
by the SDP. Also, note that our construction is based on memory-
hard functions that require a significant amount of time to produce
the proof in the above-mentioned steps 2 and 3, compared to trans-
mitting the proof to the verifier in the attestation phase (see details
in §5.3).

5.3 Attestation Phase

IoT Expunge allows users and the SDP to verify the data state
against the pre-notified data retention policy, as will be described in
this section (see Algorithm 3). First, we show that a user can verify
the data state, and then, at the end of this section, also show how
the SDP verifies the data state.
Verification of User-Associated Data. The objectives of user-
side verification are as follows: (i) it needs to find the pres-
ence/absence of user-associated data in an epoch, and (ii) it needs
to verify the data state (accessible or irrecoverable) against the
data retention policies. Below, we discuss two cases, when the user
wishes to verify her data and the state of the data.
Verification in the accessible state.We first consider the
case of verifying the data that is in accessible state. Let ti be the
time for which the user wishes to verify his/her records. The user
executes the following steps:
Step 1: Request the cloud to send data. In this step, the user speci-
fies the desired timestamp ti to the cloud. In response, the cloud
sends the following data from the relation SensorData: (i) all the
encrypted sensor records that belong to an epoch, say Tj , that con-
tains the requested sensor reading having time ti , (ii) the epoch-id,
say Tj , (iii) cryptographic timestamp, say CT j , (iv) the hash digest

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

290



h
y
j (where 1 ≤ y ≤ n, n is the number of sensor readings) of sensor

readings of the epoch Tj , (v) the cryptographic time, say CT j−1,
of the previous epoch, say Tj−1, if exists, and (vi) from the rela-
tion MetaData: epoch-id Tj , encrypted cryptographic timestamp
E(CT j ), and the encrypted verifiable tag, say E(aHj ).
Step 2: Verification of presence/absence of user-associated data.
(Lines 2-5). In this step, the user verifies the presence/absence of
her data in the encrypted sensor records at the cloud. The user
knows her device-id, say du , and hence, the user executes the hash
function,H , to know the presence/absence of her sensor data, as
follows:
h1 ←H(du ,Tj , 1), h2 ←H(du ,Tj , 2), . . ., hn ←H(du ,Tj ,n)
Where Tj is the epoch-id received from the cloud, and n is the

number of encrypted sensor readings in the epoch received from
the cloud. The user matches each computed hash digest hy against
h
y
j , where 1 ≤ y ≤ n. If any two hash digests match, it shows that

the user-associated data is present in some of n sensor readings.
Step 3: Verification of the completeness of received sensor readings.
(Lines 6-8). Proving the presence/absence of the user-associated
data does not prove that the user has received all the sensor
readings of epoch Tj (requested by the user). Thus, the user also
verifies the completeness of sensor readings from the epoch (i.e.,
the user has received all the encrypted sensor readings belonging
to the epoch Tj ), as follows:

α ← [CT
H(h1 | |h2 | |... | |hn )
i−1 ] mod η

The user compares α against the cryptographic time CT j , and
if they match, it shows the user has received all sensor readings of
the desired epoch (Line 8).
Step 4: Verification of data state (Lines 9-11). Finally, the user
wishes to verify the data state against the pre-notified data
retention policies. The user executes the hash function on the
received encrypted sensor readings, and matches the computed
hash digest, say uH , against the decrypted value of E(aHj ), denoted
by aHj . If both the hash digests match, it shows that the data state
is accessible.
Information leakage discussion. Recall that a verifier receives
the sensor readings in the encrypted format; hence, the verifier
cannot learn the cleartext sensor data. Further, based on the received
hash digests from the cloud, the verifier cannot learn how many
other users associated data are present in the data. The reason is:
each hash digest is different, and the verifier is not aware of other
users’ device-ids. Thus, our verification method does not reveal any
information to the verifier about other users.

Aside. A similar method can also be executed for verifying user-
associated data in a time range.
Verification in the irrecoverable state.We next discuss
how the verifier can attest that the cloud has deleted the data based
on the data retention policy. Here, the objective of the verification
is almost the same (as in the previous case of verifying accessible
state data), i.e., verifying the existence of user-associated data in
an epoch and verifying the data state to be irrecoverable. Thus,
in this case, steps 1, 2, and 3 are executed like the previous case
of verifying accessible state of the data. However, in step 1, the
cloud will also send the encrypted verifiable tag E(irHi ) (from the

Algorithm 4: Query logging phase.
Inputs: Block: Bi . Query records: ⟨qj , tj ,uj ⟩, where j ∈ {1,n}

1 Function QueryLog(Bi ) begin
2 for j ∈ {1,n} do

3 if j , 1 then Bh
j
i ←H(qj , tj ,uj | |Bh

j−1
i )

4 else Bh
j
i ←H(qj , tj ,uj | |x)

5 if Ti ∧ (i = 1) then BProofi ← [x
Bhni ] mod η

6 else BProofi ← [BProof
Bhni
i−1 ] mod η

7 Write encrypted block Bi and BProofi on disk

MetaData relation) of the desired epoch, say Ti , (instead of the
encrypted verifiable tag E(aHi )).
Step 4: Verification of deletion. In this step, the user verifies the time-
bounded response from the cloud to deduce that the cloud has
deleted the data by following the data retention policy, not when
the verification request is arriving from the user. The time-bounded
delay in proof generation, i.e., the hash digest over all the deleted
rows (here denoted by Proofi ) for the desired epoch Ti (refer to
steps 2 and 3 in §5.2), at the cloud, identifies the possibility whether
the cloud is generating the proof (Proofi ) on-the-fly after receiving
the verification request from the user or the cloud has already
generated the proof (Proofi ) by deleting the data against the data
retention policy.

Note that in the case when the cloud has not deleted the sensor
readings of the desired epoch, the cloud will compute the proof
(Proofi ) by executing the deletion algorithm (i.e., memory-hard
functions). However, the computation of the deletion algorithm and
generation of the proof (Proofi ) will take a longer time compared
to transmitting the already computed proof (as mentioned in step 3
in §5.2). Further, the cloud also sends the encrypted verifiable tag
E(irHi ) (which, recall that, was outsourced by the SDP in Stage 3
of §5.1) from the MetaData relation. In this step, the user matches
the proof of deletion Proofi with the decrypted value of E(irHi ). If
both the value matches, then it shows that the cloud has deleted
the data against the data retention policy.
Verification by the SDP. Our approach also allows the SDP to
verify the data state against the data retention policies by executing
steps 1, 3, and 4. Note that the SDP does not need to execute step 2.

5.4 Query Logging Phase

This section provides a method (see Algorithm 4) for securely stor-
ing all incoming queries to produce tamper-proof query logs and a
method to verify the query logs by the SDP. Recall that the reason
of having and verifying query logs is to know whether the queries
are requested by the user or the SP is executing the query to learn
the sensor data. In short, the query logging phase includes the
following stages: creating a block of queries (Stage 1), creating a
hash chain over the queries in a block (Stage 2), and generating a
block proof for each block (Stage 3). As it will be clear soon that
the purpose of creating hash chains and block proofs is to detect
that the SP is not deleting any query belonging to the block, as well
as, not deleting any block. Below, we explain all three stages:
Stage 1: Block selection. Since we cannot store all queries from
the users inside the enclave due to its limited memory, we need

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

291



to write the queries in a secure and tamper-proof manner on disk,
which is managed by the SP that can tamper with the queries. How-
ever, creating secure logs having all queries incurs the overhead
on the verifier. Thus, we need to select a fixed-size memory block
that should be less than the enclave memory. The block is used to
store the queries inside the enclave and in encrypted form on the
disk. We denote an ith block by Bi . Each block contains its creation
time, using which the verifier can verify a particular block for the
desired time. An entry in a block is a query record, denoted by
⟨qi , ti ,uj ⟩, where qi is the ith query arrived from the useruj at time
ti . Particularly, uj indicates proof of identity of the user uj , thereby
the user uj cannot deny later after transmitting the query to the SP.

The block size may depend on several factors, e.g., the time dura-
tion, the enclave size, the verification time for verifying the block,
and the communication cost for moving the block during verifica-
tion from the SP to the verifier. A small-sized block minimizes the
above-mentioned last two factors, by avoiding verifying the entire
query log, which may span over many years in a practical system.
Stage 2: Hash-chain creation (Lines 2-4 ofAlgorithm4).This
stage works in a similar way as Stage 2 in §5.1.
Step 1: Initialization. This step is identical to step 1, as in §5.3 to
generate a seed value x using a PRG function and two large prime
numbers p and q, such that η = p × q.
Step 2: Hash chain creation. This step creates a hash chain over all
the query records in a block. Consider that n query records exist
in the first block B1. The enclave creates a hash chain over query
records, as follows:

Bh11 ←H(q1, t1,u1 | |x),
Bh21 ←H(q2, t2,u2 | |Bh

1
1),

...

Bhn1 ←H(q2, t2,u2 | |Bh
n
1 )

Where Bhji denotes the hash digest for the jth query record in
the ith block. Note that the hash digest of the ith query record is
taken with the (i+1)th query record, when computing a hash digest
for the query record i + 1, except for the first query record, where
we used the random number x .
Stage 3: Block proof creation (Lines 5-6 of Algorithm 4). For
a block Bi , after computing the hash digest for the last query record,
we compute a proof for the block Bi . Here, we show how the enclave
creates the proof for the first block B1 and the second block B2. A
similar method is used over other blocks too. Let Bhn1 and Bhn2 be
the hash digests computed for the last nth query records of the
blocks B1 and B2. Note that for simplicity, we assumed that the
block contains an identical number of query records. For the block
B1, the proof (denoted by BProof1) is created as follows (Line 5):

BProof1 ← [x
Bhn1 ] mod η

Now, to generate the proof for the second block B2, we use the
proof of the previous block, i.e., BProof1, and it creates a chain over
the block proofs, as follows (Line 6):

BProof2 ← [BProof
Bhn2
1 ] mod η

Stage 4: Writing data to disk (Line 7 of Algorithm 4). The
enclave writes the following on the disk: (i) a block Bi , i > 0,

having query records encrypted using the public key of the SDP
(denoted by EPKSDP (qi , ti ,uj )), and (ii) the block proof BProofi .
Note: Verification of query log by the SDP. The SDP requests
the SP to send the following: (i) encrypted query records of the de-
sired block, say Bi , (ii) the block proof of the block Bi , i.e., BProofi ,
and (iii) the block proof of the previous block Bi−1, i.e., BProofi−1.
On receiving the query records, the SDP decrypts them. On decrypt-
ing, the SDP may check whether the user has executed the query
or the SP. Further, to ensure that the arrived query records are
correct and complete, the SDP executes the above-mentioned step
2 of Stage 2 and Stage 3. It results in a proof, say ProofSDP . The
SDP matches ProofSDP with BProofi , and if they match, it results in
that the SP has not tampered with any query record.
Note: Dealing with multiple service providers. In the full ver-
sion [4], we show how to extend IoT Expunge for multiple SPs
having different data retention policies.

6 EXPERIMENTAL EVALUATION

We conducted an experimental evaluation of IoT Expunge over
our campus testbed, which we alluded to in the introduction. To
provide context, we first discuss the university testbed and then
describe our experiments.

6.1 TIPPERS System

TIPPERS System is a smart space middleware that provides campus-
level location-based services (both inside and outside buildings)
using WiFi access-point connectivity data. In our university, the Of-
fice of Information Technology (OIT) manages more than 2000WiFi
access-points that are connected to four WLAN controllers to pro-
vide campus-wide wireless network coverage in the campus. When
a device gets connected to the university WiFi network (through
an access-point si ), the access-point si generates Simple Network
Management Protocol (SNMP) trap for this association event that
produces a tuple of the form ⟨si ,dj , tk ⟩, where dj is the user device
MAC address that is connected to the access-point si at time tk . In
real-time, all SNMP traps ⟨si ,dj , tk ⟩ are sent to the access-point’s
controller that forwards such traps (after anonymizing the device
id) to the forwarding server located at OIT. This WiFi connectiv-
ity data is sent to research groups or service providers. One such
a research group (or a service provider) is a campus-level smart
system, we have built, i.e., TIPPERS, which uses WiFi connectivity
data to build applications, such as real-time occupancy of different
regions/buildings, longitudinal analysis of building occupancy, and
live heat map at the university campus scale.

The campus administration, through its privacy and security
committee, imposed a key requirement on OIT that it must ensure
that outsourced encrypted WiFi data is deleted from the storage
based on the retention policy. IoT Expunge was motivated by the
above requirement. In addition to implementing retention policies,
we also developed mechanisms to ensure that all data access at the
service provider (viz. TIPPERS system) are logged in a tamper-proof
manner with verifiable proofs of access. Such a mechanism can be
used to verify that the requested services/queries are generated by
the user, and the service provider is not executing the services on
its own to learn the behavior of WiFi users in the campus. The im-
plementation of the retention policy, coupled with the verification

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

292



Figure 6: Computation time at

the SDP: Overhead per epoch.

Figure 7: Computation time at

the SDP: Overhead per day.

Figure 8: Verification time at

different users.

Figure 9: Computational over-

head at the cloud – per epoch

overhead.

of access by SP, provides a secure solution that realizes (and goes
beyond) the campus’s data-sharing requirements.

6.2 Experimental Results

To experiment with IoT Expunge, we worked with OIT, wherein
OIT played the role of an SDP. OIT uses a timestamping server
with 4 cores and 16 GB RAM. We used SHA-128 as the hashing
algorithm.9 OIT distributed the desired security keys to the desired
entities, as mentioned in §5. After executing the control phase, the
desired encrypted data (as mentioned in §5.1) is outsourced to a
cloud machine of 8 cores and 32 GB RAM. The cloud forwards the
encrypted sensor data to TIPPERS (or an SP) in a real-time manner.
Dataset size and data retention policies. Although IoT Ex-
punge considers streaming WiFi data, in this section, we will pro-
vide the experimental results using the data collected over the past
12 months. The size of the original data was 1.8GB. The selected
epoch durations are as follows: 15-minutes, 1-hour, and 1-day. The
data retention policy, for the TIPPERS system, was set to keep only
the last two days data in accessible state, and all the remaining
data was expunged. Thus, for example, in the case of 1-hour epoch
duration, the retention policy specifies that the data can be deleted
after the arrival of next 48 epochs, each of duration 1-hour, while
in the case of 1-day epoch duration, the retention policy specifies
that data needs to be deleted after the arrival of two epochs, each
of 1-day duration. The verification part of the retention policy was
kept as infinity, since we primarily focused on testing performance
of verification and logging. The verification part of the retention
policy only affects storage at the cloud.
Exp 1. Computational time at the SDP. Figures 6 and 7 show
the computational time at the SDP for executing the control phase.
First, we measure the computational time for encrypting the sensor
readings and generating the verifiable tag for deletion, for each
epoch of duration 15-min, 1-hour, and 1-day; see Figure 6. Then, we
measure the computational time for encrypting the sensor readings
and generating the verifiable tag for 1-day data using epochs of
different durations (15-min, 1-hour, and 1-day); see Figure 7. Figure 6
shows that as the epoch size increases, the computational time also
increases, since each epoch contains more sensor readings. Figure 7
shows that having encrypted data for 1-day either in the form of
epochs of 15-min, 1-hour, or 1-day, takes almost a similar time in
encryption, while encrypting different number of epochs, such as
96 epochs (in case of 15-min epoch duration), 24 epochs (in case of 1-
hour epoch duration), and 1 epoch (in case of 1-day epoch duration).
However, for 1-day time period, using epochs of 15-min, 1-hour,
and 1-day durations, generating verifiable tags takes a different
9One can use a different hashing algorithm too.

amount of time. The reason is: in the case of 96 epochs, each of 15-
min duration, we compute the verifiable tag for deletion on fewer
number of sensor readings of each epoch, compared to having only
1 epoch for the entire day. Figure 7 shows that as the size of the
epoch increases, generating tags for a fixed duration also increases.
Exp 2. Storage requirement at the cloud. The storage at the
cloud in the case of different epochs having different durations (15-
min, 1-hour, and 1-day) was almost identical.10 We outsourced data
of around 1 year. The raw data, i.e., the original sensor data without
executing IoT Expunge over them took around 1.8GB. However,
after executing the control phase of IoT Expunge, the data size
increased to 2.4GB. It shows that the proposed approach does not
require more storage space to keep hash digests and verifiable tags.
Exp 3. Verification at a resource-constrained user.We consid-
ered different resource-constrained users to realize the practicality
of IoT Expunge. Particularly, we considered four types of users
based on different computational capabilities (e.g., available main
memory – 1GB/2GB, and the number of cores – 1/2). Figure 8 shows
the time of verification when data is in accessible state. Note that
verifying 1-day data at resource-constrained users took at most
2seconds. As the number of days increases, the verification time
also increases. Also, verifying 1-year data took less than 1-minute.
Note that here we are not showing the time of verifying the deleted
data, since it is based on a time-bounded response by the cloud, in
which case the communication cost was negligible, i.e., 0.0007sec-
onds (Exp 5), compared to producing the proof at the cloud in 1
second (Exp 4). However, in the case of 1-year data, the time of
generating the deletion proof at the cloud took around 1-min, while
transferring the deletion proof took only 0.0007seconds.
Exp 4. Performance at the cloud. In IoT Expunge, the cloud
executed: deletion operation on the data (and re-encryption of the
data). As expected, the cloud took less time to execute both the
operations on the small-sized epoch, compared to a larger-sized
epoch, since the small-sized epoch stores less number of rows, and
hence, the operation is executed on less number of rows compared
to a larger-sized epoch; see Figure 9.
Exp 5. Communication overhead during verification. We
measured the communication impact when a verifier downloaded
the sensor data. Consider a case when the verifier wishes to attest
only one-hour/one-day data. The average size of one-hour (one-
day) data was 0.2MB (5MB). When using slow (100MB/s), medium
(500MB/s), and fast (1GB/s) speed of data transmission, the data
transmission time in case of 1-hour or 1-day data was negligible.
10For one of verifiable-tags, our dataset produced 360, 8640, 34500 verifiable-tags for
1-day, 1-hour, 15-min epochs, and took 6KB, 139KB, 552KB, respectively.

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

293



7 RELATEDWORK

There has been tremendous research on IoT data processing and
secure access [36, 37] and privacy-preserving access to comply
with the General Data Protection Regulation (GDPR) [10, 35]. A
variety of data deletion methods have been proposed such that
hardware sabotage, recoverable deletion through unlinking and
re-encryption [30–33]. The survey in [15] presents an overview of
the existing techniques for secure deletion.
Encryption- or secret-sharing-based deletion. The naïve solution to
encrypt the data and then erasing the encryption key to render the
ciphered data, is useless, since the problem can be reduced into
recovering the erased secret key, which makes the data recoverable.
Neuralyzer [45] guarantees data deletion based on revoking access
to the decryption key. Thus, the decryption key can be distributed
among multiple peers of secret-shared form [38] to avoid key re-
construction, unless peers collude with each other, which is hard to
guarantee. Another solution is to store the secret key at the trusted
platform module (TPM) and, then, guaranteeing the deletion opera-
tion execution inside TPM. For example, [22, 28] proposed deletion
through proof-of-work that enables a user to verify the correct
implementation of cryptographic operations inside TPM, without
having to access its internal source code. Speed [8] provides the
trusted memory- and distance-bounding-based deletion. [5, 32] has
shown irrecoverable deletion through overwriting the storage me-
dia. Similarly, [8, 29] have proposed deletion through overwriting
over small capacity embedded devices.
Blockchain-based deletion. [44] proposed secure deletion using
blockchains such that each deletion transaction is logged on the
shared ledger that can be verified later. Also, recently, an integrated
timestamping approach [39] has been brought into light that sug-
gests combining the trustworthiness of the central solution with the
scalability of de-centralized solutions. In particular, a blockchain-
based timestamping solution can leverage the role of SDP by main-
taining a public ledger of timestamps, where every time the SDP
generates a unique timestamp, it must be published in the subse-
quent block of the public ledger. Therefore, these timestamps can
be verified whenever the corresponding block is published on the
main chain. The work in [23] presents a graph pebbling technique
to ensure the data erasure in a bounded-space.
Caching vs retention. A data retention policy can be considered
as the proof of data possession over a function of time, and data
retention policies are substantially different from the well-known
caching policies [26]. In general, caching satisfies future data re-
quests to improve the performance by limiting the disk access and
can be viewed as short-term dynamic data retention that does not
consider the privacy aspect over past data.

8 CONCLUSION

We presented a framework, IoT Expunge for IoT data storage at
the cloud against data retention policies. By implementing data
retention policies, the data changes its state from accessible to
irrecoverable, i.e., secure deletion. We provide a verifiable deletion
method that can be executed at any third party without revealing
data privacy.We have tested IoT Expunge in a real university-based
smart space project, namely the TIPPERS system. The nominal
verification time shows the practicality of IoT Expunge.

REFERENCES

[1] General Data Protection Regulation (GDPR), available at: https://eur-lex.europa.
eu/eli/reg/2016/679/oj.

[2] California Online Privacy Protection Act (CalOPPA), available at: https://www.
privacypolicies.com/blog/caloppa/#What_Is_Caloppa.

[3] California Consumer Privacy Act (CCPA), available at: https://leginfo.legislature.
ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375.

[4] Technical report. Available at: http://isg.ics.uci.edu/publications.html.
[5] Nist special publication 800-88, revision 1: Guidelines for media sanitization.

2015.
[6] M. Abadi et al. Moderately hard, memory-bound functions. ACM Trans. Internet

Techn., 5(2):299–327, 2005.
[7] M. Ammar et al. Internet of things: A survey on the security of iot frameworks.

J. of Information Security and Applications, 38:8–27, 2018.
[8] M. Ammar et al. SPEED: secure provable erasure for class-1 IoT devices. In

CODASPY, pages 111–118, 2018.
[9] N. Apthorpe et al. Keeping the smart home private with smart(er) IoT traffic

shaping. PoPETs, 2019(3):128–148, 2019.
[10] D. A. Basin et al. On purpose and by necessity: Compliance under the GDPR. In

FC, pages 20–37, 2018.
[11] J. Benaloh et al. One-way accumulators: A decentralized alternative to digital

signatures. In EUROCRYPT, pages 274–285, 1994.
[12] E. Bertino. Data security and privacy in the IoT. In EDBT, pages 1–3, 2016.
[13] A. Biryukov et al. Egalitarian computing. In USENIX, pages 315–326, 2016.
[14] V. Costan et al. Intel SGX explained. IACR Cryptology ePrint Archive, 2016.
[15] S. M. Diesburg et al. A survey of confidential data storage and deletion methods.

ACM Computing Survey, 43(1):2:1–2:37, 2010.
[16] I. Dinur et al. Time-memory tradeoff attacks on the MTP proof-of-work scheme.

In CRYPTO, pages 375–403, 2017.
[17] B. Dong et al. Trust-but-verify: Verifying result correctness of outsourced fre-

quent itemset mining in data-mining-as-a-service paradigm. IEEE Trans. Services
Computing, 9(1):18–32, 2016.

[18] C. Dwork et al. Pricing via processing or combatting junk mail. In CRYPTO,
pages 139–147, 1992.

[19] C. Dwork et al. Pebbling and proofs of work. In CRYPTO, pages 37–54, 2005.
[20] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci.,

28(2):270–299, 1984.
[21] P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In

USENIX, volume 14, pages 77–89, 1996.
[22] F. Hao et al. Deleting secret data with public verifiability. IEEE Transactions on

Dependable and Secure Computing, 13(6):617–629, 2016.
[23] N. P. Karvelas et al. Efficient proofs of secure erasure. In Security and Cryptogra-

phy for Networks, pages 520–537, 2014.
[24] I. Leontiadis et al. Secure storage with replication and transparent deduplication.

In CODASPY, pages 13–23, 2018.
[25] S. Lins et al. Dynamic certification of cloud services: Trust, but verify! IEEE

Security & Privacy, 14(2):66–71, 2016.
[26] M. A. Maddah-Ali et al. Fundamental limits of caching. IEEE Transactions on

Information Theory, 60(5):2856–2867, 2014.
[27] S. Mehrotra et al. TIPPERS: A privacy cognizant IoT environment. In PerCom

Workshops, pages 1–6, 2016. http://tippersweb.ics.uci.edu/.
[28] M. Paul et al. Proof of erasability for ensuring comprehensive data deletion in

cloud computing. In CNSA, pages 340–348, 2010.
[29] D. Perito et al. Secure code update for embedded devices via proofs of secure

erasure. In ESORICS, pages 643–662, 2010.
[30] R. Perlman. File system design with assured delete. In Third IEEE International

Security in Storage Workshop (SISW’05), page 6, 2005.
[31] Z. N. J. Peterson et al. Secure deletion for a versioning file system. In FAST, 2005.
[32] J. Reardon et al. Secure data deletion from persistent media. In CCS, pages

271–284, 2013.
[33] J. Reardon et al. SoK: Secure data deletion. In IEEE SP, pages 301–315, 2013.
[34] R. L. Rivest et al. A method for obtaining digital signatures and public-key

cryptosystems (reprint). Commun. ACM, 26(1):96–99, 1983.
[35] I. Sanchez-Rola et al. Can i opt out yet?: Gdpr and the global illusion of cookie

control. In Asia CCS, pages 340–351, 2019.
[36] H. Shafagh et al. Talos: Encrypted query processing for the Internet of Things.

In SenSys, pages 197–210, 2015.
[37] H. Shafagh et al. Towards blockchain-based auditable storage and sharing of IoT

data. In CCSW@CCS, pages 45–50, 2017.
[38] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[39] A. Stavrou and J. Voas. Verified time. Computer, 50(3):78–82, 2017.
[40] G. Sun et al. Efficient location privacy algorithm for internet of things (IoT)

services and applications. J. Network and Computer Applications, 89:3–13, 2017.
[41] M. van Dijk et al. Hourglass schemes: How to prove that cloud files are encrypted.

In CCS, pages 265–280, 2012.
[42] W. Wang et al. Leaky cauldron on the dark land: Understanding memory side-

channel hazards in SGX. In CCS, pages 2421–2434, 2017.
[43] J. Wilson et al. Trust but verify: Auditing the secure Internet of Things. In

MobiSys, pages 464–474, 2017.
[44] C. Yang et al. Blockchain-based publicly verifiable data deletion scheme for cloud

storage. J. of Network and Computer Applications, 103:185 – 193, 2018.
[45] A. Zarras et al. Neuralyzer: Flexible expiration times for the revocation of online

data. In CODASPY, pages 14–25, 2016.

Session 7: IoT  CODASPY ’20, March 16–18, 2020, New Orleans, LA, USA

294

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.privacypolicies.com/blog/caloppa/#What_Is_Caloppa
https://www.privacypolicies.com/blog/caloppa/#What_Is_Caloppa
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
http://isg.ics.uci.edu/publications.html
http://tippersweb.ics.uci.edu/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Entities
	2.2 Data Retention Policy
	2.3 Threat Model and Security Properties
	2.4 Scoping the Problem

	3 Cryptographic Primitives
	4 IoT Expunge — Dataflow
	5 IoT Expunge — The Protocols
	5.1 Control Phase
	5.2 State Transition Phase
	5.3 Attestation Phase
	5.4 Query Logging Phase

	6 Experimental Evaluation
	6.1 TIPPERS System
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References



