
1

IOT NOTARY: Sensor Data Attestation in Smart
Environment

Nisha Panwar, Shantanu Sharma, Guoxi Wang, Sharad Mehrotra, Nalini Venkatasubramanian,
Mamadou H. Diallo, and Ardalan Amiri Sani

Abstract—Contemporary IoT environments, such as smart buildings, require end-users to trust data-capturing rules published by the
systems. There are several reasons why such a trust is misplaced — IoT systems may violate the rules deliberately or IoT devices may
transfer user data to a malicious third-party due to cyberattacks, leading to the loss of individuals’ privacy or service integrity. To
address such concerns, we propose IOT NOTARY, a framework to ensure trust in IoT systems and applications. IOT NOTARY provides
secure log sealing on live sensor data to produce a verifiable ‘proof-of-integrity,’ based on which a verifier can attest that captured
sensor data adheres to the published data-capturing rules. IOT NOTARY is an integral part of TIPPERS, a smart space system that has
been deployed at UCI to provide various real-time location-based services in the campus. IOT NOTARY imposes nominal overheads for
verification, thereby users can verify their data of one day in less than two seconds.

Index Terms—IoT, sensor data, smart buildings, WiFi.

F

1 INTRODUCTION

IoT devices (e.g., camera, WiFi access-points, cell phones,
bodyworn sensors, occupancy sensors, temperature sensors, and
light sensors) capture user-related data for empowering existing
systems with new capabilities. While fine-grained continuous
monitoring by IoT devices (e.g., camera and WiFi access-points)
offers numerous benefits and empowers existing systems with new
capabilities, it also raises several privacy and security concerns
(e.g., smoking habits, gender, and religious belief). To highlight
the privacy concern, we first share our experience in building
location-based services at UC Irvine using WiFi connectivity data.

Use-case: University WiFi data collection. In our on-going
project, entitled TIPPERS [2], we have developed a variety of
location-based services based on WiFi connectivity dataset. At
UC Irvine, more than 2000 WiFi access-points and four WLAN
controllers (managed by the university IT department) provide
campus-wide wireless network coverage. Whenever a device
connects to the campus WiFi network (through an access-point),
the access-point generates Simple Network Management Protocol
(SNMP) trap for this association event. Each association event
contains access-point-id, si, user device MAC address, dj , and the
time of the association, tk. All SNMP traps 〈si, dj , tk〉 are sent to
access-point’s controllers in realtime. The access-point controller
anonymizes device MAC addresses (to preserve the privacy of
users in the campus).

TIPPERS collects WiFi connectivity data from one of the
controllers that manage 490 access-points and receives 〈si, dj , tk〉
tuples for each connectivity event. However, before receiving
any WiFi data, TIPPERS notifies all WiFi users about the
data-capture rules by sending emails over a university mailing
list. Subsequently, based on WiFi connectivity data 〈si, dj , tk〉,
TIPPERS provides various realtime applications. Some of these
services, e.g., computing occupancy levels of (regions in)
buildings in the form of a live heatmap, require only anonymous
A preliminary version of this work was accepted in IEEE NCA 2019 [1].
Please see the cover letter to find the details about the new content added in
this version.
The authors are with University of California, Irvine, USA.

data. Other services, e.g., providing location information (within
buildings) or contextualized messaging (to provide messages to a
user when he/she is in the vicinity of the desired location), require
user’s original disambiguated data. To date, over one hundred
users have registered into TIPPERS to utilize realtime services.
A key requirement imposed by the university in sharing data
with TIPPERS is that the system supports provable mechanisms
to verify that individuals have been notified prior to their data
(anonymized or not) being used for service provisioning. Also, an
option for users to opt-out of sharing their WiFi connectivity data
with TIPPERS must be supported. If users opt-out, the system
must prove to the users that indeed their data was not shared
with TIPPERS. TIPPERS use immutable log-sealing to help all
users to verify that the captured data is consistent with pre-notified
data-capture rules.

Our experience in working with various groups in the campus
is that (persistent) location data can be deemed quite sensitive
by certain individuals with concerns about the spied upon by the
administration or by others. Thus, mechanisms for notification of
data-capture rules, secure log-sealing, and verification components
made a sub-framework, entitled IOT NOTARY, which has become
an integral part of TIPPERS.

Data-capture concerns in IoT environments are similar to
that in mobile computing, where mobile applications may have
continuous access to resident sensors on mobile devices. In the
mobile setting, data-capture rules and permissions [3] are used to
control data access, i.e., which applications have access to which
data generated at the mobile device (e.g., location and contact
list) for which purpose and in which context. At the abstract
level, a data-capture rule informs the user about the nature of
personally identifying information that an application captures,
i.e., for what purpose and in what context. However, in IoT
settings, the data-capture framework differs from that in the mobile
settings, in two important ways:
1) Unlike the mobile setting, where applications can seek

user’s permission at the time of installation, in IoT settings,
there are no obvious mechanisms/interfaces to seek users’

2

preferences about the data being captured by sensors of the
smart environment. Recent work [4] has begun to explore
mechanisms using which environments can broadcast their
data-capture rules to users and seek their explicit permissions.

2) Unlike the mobile setting, users cannot control sensors in IoT
settings. While in mobile settings, a user can trust the device
operating system not to violate the data-capture rules, in IoT
settings, trust (in the environment controlling the sensors)
may be misplaced. IoT systems may not be honest or may
inadvertently capture sensor data, even if data-capture rules
are not satisfied [5], [6].
We focus on the above-mentioned second scenario and

determine ways to provide trustworthy sensing in an untrusted IoT
environment. Thus, the users can verify their data captured by IoT
environment based on pre-notified data-capture rules. Particularly,
we deal with three sub-problems, namely secure notification to the
user about data-capture rules, secure (sensor data) log-sealing to
retain immutable sensor data, as well as, data-capture rules, and
remote attestation to verify the sensor data against pre-notified
data-capture rules by a user, without being heavily involved in the
attestation process.

Our contribution and outline of the paper. We provide:
• A user-centric framework (§4.2) to ensure trustworthy data

collection in untrusted IoT spaces, entitled IOT NOTARY that
contains three entities (§3.1): (i) infrastructure deployer that
installs sensors, (ii) a service provider (SP, e.g., TIPPERS)
that establishes a list of data-capture rules that dictates the
condition under which a sensor’s data can/cannot be utilized
to provide realtime services to the user, and (iii) users that use
services provided by sensors, as well as, by SP, (if interested).

• Two models to inform the user about the data-capture rules
(§5.1): notice-only model and notice-and-ACK model.

• A secure log-sealing mechanism (§5.2) implemented by secure
hardware that cryptographically retains logs, data-capture
rules, sensors’ state, and contextual information to generate
a proof-of-integrity in an immutable fashion.

• Optimized secure log-sealing mechanisms that regard
the sensor state and user-device-id (§5.2.3 and §5.2.4),
implemented by secure hardware to reduce the size of secure
log.

• A secure attestation mechanism (§5.3), mixed with SIGMA
protocol [7], allowing a verifier (a user or a non-mandatory
auditor) to securely attest the sealed logs as per the
data-capture rules.

• Implementation results of IOT NOTARY on the university live
WiFi data in §6.

2 COMPARISON WITH EXISTING WORK
We classify the related work in the scope of IoT attestation into
the following three categories:

Attestation in the context of IoT. The existing remote attestation
protocols verify the internal memory state of untrusted devices
through a trusted remote verifier. For example, AID [8] attests the
internal state of neighboring devices through key exchange and
proofs-of-non-absence. In AID, the adversary can compromise
communication channels, the internal state of the device, and
the cryptographic keys. SEDA [9] attests low-end embedded
devices in a swarm and provides the number of devices
that pass attestation. However, SEDA attests neighboring peer
devices only. Similarly, DARPA [10] and SANA [11] allow

detection of physical attacks by using heartbeat messages and
provide aggregate network attestation, with high computation and
communication costs, which are quadratic in the network size.
SMARM [12] protects against malware by scanning memory
in a secret randomized order. However, it may require many
iterations to eventually detect malware. RADIS [13] assumes
that a compromised IoT service can influence genuine operations
of other services without changing the software. Thus, RADIS
provides control-flow attestation for distributed services among
the interconnected IoT devices. In short, all such work only deals
with attestation of sensor devices, and their methods cannot be
used to verify sensor data against the data-capture rules.

In contrast, IOT NOTARY does not deal with the verification
of internal state of sensor devices, since in our case, (WiFi
access-point) sensors are assumed to be deployed by a trusted
entity (e.g., the university IT department). Of course, cyberattacks
are possible on sensors to maliciously record data and that can
also be detected by IOT NOTARY, while not verifying the sensors.

Attestation using secure hardware. [14] provided SGX-based
attestation method for physical attacks on the sensor, e.g.,
modifying memory and changing I/O signals. Fiware [15]
provides secure key management through key vault running in
SGX, thereby provides an alternative to PKI-based solutions.
However, [14], [15] are unable to verify any sensor data. In [14],
[15], if data-capture rules are mis-notified to the user, SGX cannot
detect any inconsistency.

In contrast, IOT NOTARY does not deal with attacks on
sensors, as well as, a specific key management protocol. However,
IOT NOTARY can detect and discard the sensor data that does not
comply with the notifications released earlier.

Integrity verification. [16], [17] proposed a privacy-preserving
scheme based on zero-knowledge proofs to detect log-exclusion
attacks. [16] provided solutions for accountability and auditing
through hierarchical multi-party computation (MPC) and succinct
zero-knowledge proof statements. [18] considered verification
process for MPC using a trusted-third-verifier. [17] provided a
privacy-preserving certificate transparency service, which signs
a message four times, where an auditor can trace the certified
logs. Other techniques have proposed the concept of excerpts and
snapshots for log integrity verification. For example, in [19] used
hash-chains for integrity protection and identity-based searchable
encryption. [20] proposed a Merkle tree-based history tree to
prove the sequence of logs over time. [21] proposed a Bloom
tree that stores proof of logs at an untrusted cloud. Further,
access-pattern-hiding cryptographic techniques [22], [23] may be
used to verify any stored log, since an adversary cannot skip
the computation on some parts of the data, due to executing an
identical computation on each sensor reading. Techniques, e.g.,
function secret-sharing [22] or vSQL [23], may be used to verify
query results on cleartext. However, these techniques cannot detect
log deletion. Also, all such techniques incur signification time.
For example, vSQL took more than 4000 seconds to verify a
SQL query. In addition, any end-to-end encryption model is not
sufficient for verification.

In contrast, IOT NOTARY provides a complete security to
sensor data and realtime data attestation approach. Unlike [17],
IOT NOTARY requires only two signatures per file, where one is
used to validate log completeness, and another is used to validate
the log ordering with respect to adjacent logs.

3

Infrastructure Deployer (IFD,

e.g., University IT Department)

Users

Service

Provider

(SP, e.g.,

TIPPERS)

Infrastructure

Auditor

Figure 1: Entities in IOT NOTARY.

3 MODELING IOT DATA ATTESTATION

3.1 Entities
Our model has the following entities, see Figure 1:

Infrastructure Deployer (IFD). IFD (which is the university
IT department in our use-case; see §1) deploys and owns a
network of p sensors devices (denoted by s1, s2, . . . , sp), which
capture information related to users in a space. The sensor devices
could be: (i) dedicated sensing devices, e.g., energy meters and
occupancy detectors, or (ii) facility providing sensing devices,
e.g., WiFi access-points and RFID readers. Our focus is on facility
providing sensing devices, especially WiFi access-points that also
capture some user-related information in response to services.
E.g., WiFi access-points capture the associated user-device-ids
(MAC addresses), time of association, some other parameters
(such as signal strength, signal-to-noise ratio); denoted by:
〈di, sj , tk, param〉, where di is the ith user-device-id, sj is the
jth sensor device, tk is kth time, and param is other parameters
(we do not deal with param field and focus on only the first three
fields). All sensor data is collected at a controller (server) owned
by IFD. The controller may keep sensor data in cleartext or in
encrypted form; however, it only sends encrypted sensor data to
the service provider.

Service Providers (SP). SP (which is TIPPERS in our use-case;
see §1) utilizes the sensor data of a given space to provide different
services, e.g., monitoring a location and tracking a person. SP
receives encrypted sensor data from the controller.

Data-capture rules. SP establishes data-capture rules (denoted by
a list DC having different rules dc1, dc2, . . . , dcq). Data-capture
rules are conditions on device-ids, time, and space. Each
data-capture rule has an associated validity that indicates the time
during which a rule is valid. Data-capture rules could be to capture
user data by default (unless the user has explicitly opted out).
Alternatively, default rules may be to opt-out, unless, users opt-in
explicitly. Consider a default rule that individuals on the 6th floor
of the building will be monitored from 9pm to 9am. Such a rule
has an associated condition on the time and the id of the sensor
used to generate the data. Now, consider a rule corresponding
to a user with a device di opting-out of data capture based on
the previously mentioned rule. Such an opt-out rule would have
conditions on the user-id, as well as, on time and the sensor-id.
For sensor data for which a default data-capture rule is opt-in,
the captured data is forwarded to SP, if there does not exist any
associated opt-out rules, whose associated conditions are satisfied
by the sensor data. Likewise, for sensor data where the default is

opt-out, the data is forwarded to SP only, if there exists an explicit
opt-in condition. We refer to the sensor data to have a sensor state
(si.state denotes the state of the sensor si) of 1 (or active), if
the data can be forwarded to SP; otherwise, 0 (or passive). In the
remaining paper, unless explicitly noted, opt-out is considered as
the default rule, for simplicity of discussion.

Whenever SP creates a new data-capture rule, SP must send
a notice message to user devices about the current usage of
sensor data (this phase is entitled notification phase). SP uses Intel
Software Guard eXtension (SGX) [24], which works as a trusted
agent of IFD, for securely storing sensor data corresponding to
data-capture rules. SGX keeps all valid data-capture rules in the
secure memory and only allows to keep such data that qualifies
pre-notified valid data-capture rules; otherwise, it discards other
sensor data. Further, SGX creates immutable and verifiable logs
of the sensor data (this phase is entitled log-sealing phase). The
assumption of secure hardware at a machine is rational with the
emerging system architectures, e.g., Intel machines are equipped
with SGX [25]. However, existing SGX architectures suffer from
side-channel attacks, e.g., cache-line, branch shadow, page-fault
attacks [26], which are outside the scope of this paper.

Users. Let d1, d2, . . . , dm be m (user) devices carried by
u1, u2, . . . , um′ users, where m′ ≤ m. Using these devices,
users enjoy services provided by SP. We define a term, entitled
user-associated data. Let 〈di, sj , tk〉 be a sensor reading. Let di
be the ith device-id owned by a user ui. We refer to 〈di, sj , tk〉
as user-associated data with the user ui. Users worry about their
privacy, since SP may capture user data without informing them,
or in violation of their preference (e.g., when the opt-out was
a default rule or when a user opted-out from an opt-in default).
Users may also require SP to prove service integrity by storing
all sensor data associated with the user (when users have opted-in
into services), while minimally being involved in the attestation
process and storing records at their sides (this phase is entitled
attestation phase).

Auditor. An auditor is a non-mandatory trusted-third-party that
can (periodically) verify entire sensor data against data-capture
rules. Note that a user can only verify his/her data, not the entire
sensor data or sensor data related to other users, since it may reveal
the privacy of other users.

3.2 Threat Model
We assume that SP and users may behave like adversaries.
The adversarial SP may store sensor data without informing
data-capture rules to the user. The adversarial SP may tamper with
the sensor data by inserting, deleting, modifying, and truncating
sensor readings and secured-logs in the database. By tampering
with the sensor data, SP may simulate the sealing function over
the sensor data to produce secured-logs that are identical to
real secured-logs. Thus, the adversary may hinder the attestation
process and make it impossible to detect any tampering with the
sensor data by the verifier (that may be an auditor or a user).
Further, as mentioned before that SP utilizes sensor data to provide
services to the user. However, an adversarial SP may provide
false answers in response to user queries. We assume that the
adversarial SP cannot obtain the secret key of the enclave (by
any means of side-channel attacks on SGX). Since we assumed
that sensors are trusted and cannot be spoofed, we do not need to
consider a case when sensors would collude with SP to fabricate
the logs.

4

An adversarial user may repudiate the reception of notice
messages about data-capture rules. Further, an adversarial user
may impersonate a real user, and then, may retrieve the sensor
data and secured-log during the verification phase. This way
an adversarial user may reveal the privacy of the users by
observing sensor data. Further, a user may infer the identity of
other users associated with sensor data by potentially launching
frequency-count attacks (e.g., by determining which device-ids are
prominent).

3.3 Security Properties
In the above-mentioned adversarial model, an adversary wishes
to learn the (entire/partial) data about the user, without notifying
or by mis-notifying about data-capture rules, such that the
user/auditor cannot detect any inconsistency between data-capture
rules and stored sensor data at SP. Hence, a secure attestation
algorithm must make it detectable, if the adversary stores sensor
data in violation of the data-capture rules notified to the user.
To achieve a secure attestation algorithm, we need to satisfy the
following properties:

Authentication. Authentication is required: (i) between SP and
users, during notification phase; thus, the user can detect a rogue
SP, as well as, SP can detect rogue users, and (ii) between
SP and the verifier (auditor/user), before sending sensor data to
the verifier to prevent any rogue verifier to obtain sensor data.
Thus, authentication prevents threats such as impersonation and
repudiation. Further, a periodic mutual authentication is required
between IFD and SP, thereby discarding rogue sensor data by SP,
as well as, preventing any rogue SP to obtain real sensor data.

Immutability and non-identical outputs. We need to maintain
immutability of notice messages, sensor data, and the sealing
function. Note that if the adversary can alter notice messages after
transmission, it can do anything with the sensor data, in which
case, sensor data may be completely stored or deleted without
respecting notice messages. Further, if the adversary can alter the
sealing function, the adversary can generate a proof-of-integrity,
as desired, which makes the flawless attestation impossible. The
output of the sealing function should not be identical for each
sensor reading to prevent an adversary to forge the sealing function
(and to prevent the execution of frequency-count attack by the
user). Thus, immutability and non-identical outputs properties
prevent threats, e.g., inserting, deleting, modifying, and truncating
the sensor data, as well as, simulating the sealing function.

Minimality, non-refutability and privacy-preserving
verification. The verification method must find any misbehavior
of SP, during storing sensor data inconsistent with pre-notified
data-capture rules. However, if the verifiers wish to verify a subset
of the sensor data, then they should not verify the entire sensor
data. Thus, SP should send a minimal amount of sensor data
to the verifier, enabling them to attest what they wish to attest.
Further, the verification method: (i) cannot be refuted by SP,
and (ii) should not reveal any additional information to the user
about all the other users during the verification process. These
properties prevent SP to store only sensor data that is consistent
with the data-capture rules notified to the user. Further, these
properties preserve the privacy of other users during attestation
and impose minimal work on the verifier.

3.4 Assumptions
This section presents assumptions, we made, as follows:
1) The sensor devices are assumed to be

computationally-inefficient to locally generate a verifiable log
for the continuous data stream as per the data-capture rules.

2) Sensor devices are tamper-proof, and they cannot be
replicated/spoofed (i.e., two devices cannot have an identical
id). In short, we assume a correct identification of sensors,
before accepting any sensor-generated data at the controller at
IFD, and it ensures that no rogue sensor device can generate
the data on behalf of an authentic sensor. Further, we assume
that an adversary cannot deduce any information from the
dataflow between a sensor and the controller. Recall that in our
setting the university IT department collects the entire sensor
data from their owned and deployed sensors, before sending it
to TIPPERS.

3) We assume the existence of an authentication protocol between
the controller and SP, so that SP receives sensor data only from
authenticated and desired controller.

4) The communication channels between SP and users, as well
as, between SP and auditor are insecure. Thus, our solution
incorporates an authenticated key exchange based on SIGMA
protocol (which protects sender identity). When the verifier’s
identity is proved, the cryptographically sealed logs are sent to
the verifier.

5) By any side-channel attacks on SGX, one cannot tamper with
SGX and retrieve the secret-key of SGX. (Otherwise, the
adversary can simulate the sealing process.)

Definition: Attestation Protocol. Now, we define an attestation
protocol that consists of the following components:
• Setup(): Given a security parameter 1k, Setup() produces a
public key of the enclave (PKE) and a corresponding private key
(PRE), used by the enclave to securely write sensor logs.
• Sealing(PRE , 〈di, sj , sj .state, tk〉, dcl): Given the key PRE ,
Sealing() (which executes inside the enclave) produces a
verifiable proof-of-(log)-integrity (PI) and proof-of-integrity for
user/service (query) verification (PU), based on the received
sensor readings and the current data-capture-rule, dcl.
• Verify(PKE , 〈∗, sj , sj .state, tk,PI, dcl〉,Sealing(PRE ,
〈di, sj , sj .state, tk〉, dcl)): Given the public key PKE , sensor
data, proof, and data-capture rule, Verify() is executed at
the verifier, where ∗ denotes the presence/absence of a
user-device-id, based on dcl. Verify() produces 1, iff PI =
Verify(PKE , 〈∗, sj , sj .state, tk, dcl〉,Sealing(PRE , 〈di, sj ,
sj .state, tk〉, dcl)); otherwise, 0. Similarly, Verify() can attest
PU .

Note that the functions Sealing() and Verify() are known to
the user, auditor, and SP. However, the private key PRE is only
known to the enclave.

4 IOT NOTARY: CHALLENGES AND APPROACH
This section provides challenges we faced during IOT NOTARY

development and an overview of IOT NOTARY.

4.1 Challenges and Solutions
We classify the problem of data attestation in IoT into three
categories: (i) secure notification, (ii) log-sealing, and (iii) log
verification. Before going into details, we provide the challenges
that we faced during the development and the way we overcome
those challenges (Figure 2), as follows:

5

Notification: informing users

about data-capture rules

1. NoM Model

2. NaM Model

Log-sealing: collecting sensor

data and sealing the data

1. Hash-chains

2. Proof-of-Integrity

Attestation: retrieving and

verifying sealed data

1. At an trusted auditor

2. At users

Operational Apriori Post-facto

Time
Figure 2: Phases in IOT NOTARY.

C1. Secured notification for data-capture rules. The declaration
of data-capture rules requires a reliable and secure notification
scheme, thereby users can verify the sender of notice messages.
Trivially, this can be done through a unique key establishment
between each user and SP. However, this incurs a major overhead
at SP, as well as, SP can send different messages to different users.
Solution. To address the above challenge, we develop three

solutions: One is based on secure notifier that delivers a
cryptographically encrypted notice message, which is signed by
the enclave, to all the users (see §5.1). The second solution uses
time-based one-time passwords [27], [28] that remain valid for
only a specific duration. The users can verify these temporal
passwords to authenticate the sender, and hence, the validity of
notifications sent (see Appendix A). The third solution uses an
acknowledgment from the user and does not need any trusted
notifier (see §5.1).

C2. Tamper-proof cryptographically secured-log sealing. The
verification process depends on immutable sensor data that is
stored at SP. A trivial way is to store the entire data using a
strong encryption technique, mixed with access-pattern hiding
mechanisms. While it will prevent tampering with the data (except
deletion), SP cannot develop realtime services on this data. Thus,
the first challenge is how to store sensor data at SP according
to data-capture rules; hence, the verifier can attest the data. The
second challenge arises due to the computational cost at the
verifier and communication cost between the verifier and SP to
send the verifiable sensor data; e.g., if the verifier wishes to
attest only one-day old sensor data over the sensor data of many
years, then sending many years of sensor data to the verifier is
impractical. Finally, the last challenge is how to securely store
data when data-capture rules are set to be false (i.e., not to store
data). In this case, not storing any data would not provide a way
for verification, since SP may store data and can inform the verifier
that there is no data as per the existing data-capture rules.
Solution. To address the first challenge, we develop a

cryptographic sealing method based on hash-chains and
XOR-linked-lists to ensure immutable sensor logs, after the sealed
logs leave the enclave. Thus, any log addition/deletion/update
is detectable (see §5.2.1). To address the second challenge, we
execute sealing on small-sized chunks, which each maintains
its hash-chain and XOR-links. The XOR-links ensure the log
completeness, i.e., a chunk before and after the desired chunk
has not been altered (see §5.2.1). To address the third challenge,
we store the device state of the first sensor-reading for which
the data-capture rule is set to false. Further, we discard all
subsequent sensor-readings, unless finding a sensor-reading for
which data-capture rule is to store data (§5.2.3).

C3. Privacy-preserving log verification. In case of log-integrity
verification, SP can provide the entire sensor data with
cryptographically sealed log to the trusted auditor. But, the
challenge arises, if a user asks to verify her user-associated

data/query results. Here, SP cannot provide the entire sensor data
to the user, since it will reveal other users’ privacy.
Solution. To address this challenge, we develop a

technique to non-deterministically encrypt the user-id before
cryptographically-sealing the sensor data. However, only
non-deterministic encryption is also not enough to verify the
log completeness, we compute XOR operation on each sensor
reading, and then, create XOR-linked-list (see §5.2.2).

4.2 IOT NOTARY: An Overview
This section presents an overview of the three phases and dataflow
among different entities and devices, see Figure 3.

Notification phase: SP to Users messages. This is the first
phase that notifies users about data-capture rules for the IoT
space using notice messages (in a verifiable manner for later
stages). Such messages can be of two types: (i) notice messages,
and (ii) notice-and-acknowledgment messages. SP establishes (the
default) data-capture rules and informs trusted hardware (1).
Trusted hardware securely stores data-capture rules (2 , 5) and
informs the trusted notifier (3) that transmits the message to all
users (4). Only notice messages need a trusted notifier to transmit
the message (see §5.1).

Log-sealing phase: Sensor devices to SP messages. Each sensor
sends data to the controller (0). The controller receives the correct
data, generated by the actual sensor, as per our assumptions
(and settings of the university IT department). The controller
sends encrypted data to SP (6) that authenticates the controller
using any existing authentication protocol, before accepting data.
Trusted hardware (Intel SGX) at SP reads the encrypted data in
the enclave (7).

Working of the enclave. The enclave decrypts the data and checks
against the pre-notified data-capture rules. Recall that the
decrypted data is of the format: 〈di, sj , tk〉, where di is ith

user-device-id, sj is the jth sensor device, and tk is kth time.
After checking each sensor reading, the enclave adds a new field,
entitled sensor (device) states. The sensor state of a senor sj
is denoted by sj .state , which can be active or passive,
based on capturing user data. For example, sj .state = active
or (1), if data captured by the sensor sj satisfies the data-capture
rules; otherwise, sj .state = passive or (0). For all the sensors
whose state = 0, the enclave deletes the data. Then, the
enclave cryptographically seals sensor data, regardless of the
sensor state, and provides cleartext sensor data of the format:
〈di, sj , sj .state = 1, tk〉 to SP (8) that provides services using
this data (9). Note that the cryptographically sealed logs and
cleartext sensor data are kept at untrusted storage of SP (8 , 10).

Verification phase: SP to verifier messages. In our model, an
auditor and a user can verify the sensor data. The auditor can verify
the entire/partial sensor data against data-capture rules by asking

6

Infrastructure

Deployer

(IFD)

Service Provider (SP) Trusted

Auditor

Trusted Untrusted

A
K

E
 S

ec
u

re
d

C
o
m

m
u

n
ic

a
ti

o
n

A
K

E
 S

ec
u

re
d

C
o
m

m
u

n
ic

a
ti

o
n

Encrypted

WiFi Sensor Data

Data-Capture Rule Creation

Trusted Notifier

Cleartext sensor

data

Secured logs for

integrity verification

Decrypt, check,

seal

Applications

User

Secure data-capture

rule creation

Secured logs for user verification

Data-capture rule

store

1

2

3

5

4

6

7

8

9

10

11

12

10

SGX

Encrypted

DataController
0

0 0

12

Figure 3: Dataflow and computation in the protocol. Trusted parts are shown in shaded box.

SP to provide cleartext sensor data and cryptographically sealed
logs (8 , 10). The users can also verify their own data against
pre-notified messages or can verify the results of the services
provided by SP using only cryptographically sealed logs (12).
Note that using an underlying authentication technique (as per our
assumptions), auditor/users and SP authenticate each other before
transmitting data from SP to auditor/users.

5 ATTESTATION PROTOCOL

This section presents three phases of attestation protocol.

Preliminary Setup Phase. We assume a preliminary setup phase
that distributes public keys (PK) and private keys (PR), as
well as, registers user devices into the system. The trusted
authority (which is the university IT department in our setup
of TIPPERS) generates/renews/revokes keys used by the secure
hardware enclave (denoted by 〈PKE ,PRE〉) and the notifier
(denoted by 〈PKN ,PRN 〉). The keys are provided to the
enclave during the secure hardware registration process. Also,
〈PK di ,PRdi〉 denotes keys of the ith user device. Usages of
keys: The controller uses PKE to encrypt sensor readings before
sending to SP. PRE is also used by the enclave to write encrypted
sensor logs and decrypt sensor readings. PKN is used during the
notification phase by SGX to send an encrypted message to the
notifier. User device’s keys are used during device registration, as
given below.

We assume a registration process during which a user identifies
herself to the underlying system. For instance, in a WiFi network,
users are identified by their mobile devices, and the registration
process consists of users providing the MAC addresses of their
devices (and other personally identifiable information, e.g., email
and a public key). During registration, users also specify their
preferred modality through which the system can communicate
with the user (e.g., email and/or push messages to the user device).
Such communication is used during the notification phase.1

5.1 Notification Phase
The notification phase informs data-capture rules established by
SP to the (registered) users by explicitly sending notice messages.
1Figures 4 and 5 show additional methods that we used in UCI to inform about the
data-capturing rules.

We consider two models for notification, differing based on
acknowledgment from users.

In the notice-only model (NoM), SP informs users of
data-capture rules, but users may not acknowledge receipt of
the message. Such a model is used to implement policies,
when data capture is mandatory, and the user cannot exercise
control, over data capture. Since there is no acknowledgment,
SP is only required to ensure that it sends a notice, but is not
required to guarantee that the user received the notice. In contrast,
a notice-and-ACK model (NaM) is intended for discretionary
data-capture rules that require explicit permission from users prior
to data capture. Such rules may be associated, for instance, with
fine-grained location services that require users’ location. A user
can choose not to let SP track his location, but will likely not be
able to avail some services.

Implementation of notification differs based on the model
used. Interestingly, since NaM requires acknowledgment, the
notification phase is easier as compared to NoM that uses a trusted
notifier to deliver the message to users. Below we discuss the
implementation of both models:
Notification implementation in NoM. NoM assumes that, by
default, data-capture rules are set not to retain any user data, unless
SP, first, informs SGX about a data-capture rule, (i.e., SP cannot
use the encrypted sensor data for building any application, see
9 in Figure 3). When SP creates a new data-capture rule, SP
must inform SGX. Then, the enclave encrypts the data-capture
rule using the public key (i.e., PKN) of the notifier and informs
the trusted notifier (via SP) about the encrypted data-capture
rule by writing it outside of the enclave (in our user-case
§1, the university IT department works as a trusted notifier).
Data-capture rules are maintained by SP on stable storage, which
is read by SGX into the enclave to check, if the sensor data
should be forwarded to SP. SGX can retain a cache of rules
in the enclave, if such rules are still valid (and hence used for
enforcement).2 Finally, the trusted notifier acknowledges SP about
receiving the encrypted data-capture rule, and then, informs users
of the encrypted data-capture rule via signed notice messages. On
2Since the enclave has limited memory, the enclave cannot retain all the valid and
non-valid data-capture rules after a certain size. Thus, the enclave writes all the non-valid
data-capture rules on the disk after computing a secured hash digest over all the rules.
Taking a hash over the rules is required to maintain integrity of all the rules, since any
rule written outside of the enclave can be tampered by SP. Recall that altering a rule will
make it impossible to verify partial/entire sensor data.

7

Figure 4: Notice messages
placed on different buildings in
UCI. Figure 5: Notice messages at

the university IT department
website.

receiving the notice message, the users may decrypt it and obtain
the data-capture rule.

To see the role of trusted hardware above, suppose that SP was
responsible for informing users about data-capture rules directly.
Data-capture rules are also required by SGX during log-sealing
(PHASE 2). An adversarial SP may inform SGX, not to users, or
may inform non-identical rules to users and to SGX. Hence, SP
cannot inform the rule to users directly.

To see the role of the trusted notifier above, suppose that
SP can directly inform users about encrypted data-capture rules
obtained from SGX. An adversarial SP may not deliver the
data-capture rule to all or some of the users; thus, an encrypted
data-capture rule is not helpful. Hence, a trusted notifier ensures
that the notice message is sent to all the registered users. Note that
the trusted notifier might be a trusted web site that lists all the data
capture rules which users can access.
Implementation of notification in NaM. Unlike NoM, the
notification phase of NaM does not require the trusted notifier. In
NaM, by default, SP cannot utilize all those sensor readings having
device-ids for which the users have not acknowledged. Likewise
NoM, in NaM, SP informs data-capture rules to SGX that encrypts
the rule and writes outside of the enclave. The encrypted rules are
delivered by SP to users, unlike NoM. On receiving the message, a
user may securely acknowledge the enclave about her consent. The
enclave retains all those device-ids that acknowledge the notice
message for log-sealing phase and considers those device-ids
during the log-sealing phase to retain their data while discarding
data of others.

5.2 Log Sealing Phase
The second phase consists of cryptographically sealing the
sensor data for future verification against pre-notified data-capture
rules. The sensor data is sealed into secured logs using
authenticated data structures, e.g., hash-chains and XOR-linked
lists (as shown in Figures 6, 7), by the sealing function,
Sealing(PRE , 〈di, sj , sj .state, tk〉), executed in the enclave at
SP. Let us explain log-sealing in the context of WiFi connectivity
data. The enclave reads the encrypted sensor data (7 in Figure 3)
and executes the three steps: (i) decrypts the data, (ii) checks
the data against pre-notified valid data-capture rules, and (iii)
cryptographically seals the data and store appropriate secured
logs.

Below we explain our log sealing approach. To simplify the
discussion, we first consider the case when all the sensor data
satisfies some data-capture rule (i.e., the state of all the sensor data
is one), and hence, data is forwarded to and stored at SP §5.2.1.
Then, we adapt the protocol to deal with the case when some
sensor data satisfies some data-capture rule (i.e., the state of some

sensor data is one, and hence, data is forwarded to and stored at
SP), while remaining sensor data does not satisfy any rule (i.e.,
the state of the remaining sensor data is zero, and hence, data is
forwarded to SP) 5.2.3.

5.2.1 Sealing Entire Sensor Data
Informally, the sealing function executes a hash function on each
sensor reading (or value), whose output is used to create a chain of
hash digests. At the end of the sensor readings/values, the sealing
function generates an authenticated proof-of-integrity by mixing
a computationally-hard secure string. For example, consider four
values: v1, v2, v3, and v4. The sealing function works as follows:

Value Hash output
v1 h1 ← H(v1||H(0))
v2 h2 ← H(v2||h1)
v3 h3 ← H(v3||h2)
v4 h4 ← H(v4||h3)
Proof-of-integrity 〈signPRE

(SS ⊕ h4)〉
In this example, all the values are hashed while including the

hash digest of the previous value, except the first value. Note that
only the first value is hashed with the hash digest of zero. In the
end, the proof-of-integrity is prepared by signing XORed-value of
the hash digest of the last value and a secret random string, SS .
Note that the secret random string is generated for each chunk in
a specific manner, which will be clear in the detailed description
of the protocol; please see below.

The sealing operation consists of the following three
phases: (i) chunk creation, (ii) hash-chain creation, and (iii)
proof-of-integrity creation; described below.

PHASE 1: Chunk creation. The first phase of the sealing
operation finds an appropriate size of a chunk (to speed up the
attestation process). Note that the incoming encrypted sensor data
may be large, and it may create problems during verification, due
to increased communication between SP and the verifier. Also, the
verifier needs to verify the entire data, which have been collected
over a large period of time (e.g., months/years). Further, creating
cryptographic sealing over the entire sensor data may also degrade
the performance of Sealing() function, due to the limited size of
SGX enclave. Thus, we first determine an appropriate chunk size,
for each of which the sealing function is executed.

The chunk size depends on time epochs, the enclave size,
the computational overhead of executing sealing on the chunk,
and the communication overhead for providing the chunk to the
verifier. A small chunk size reduces the communication overhead
and maintains the log minimality property, thereby during the log
verification phase, a verifier retrieves only the desired log chunks,
instead of retrieving the entire sensor data. Consequently, SP stores
many chunks.

PHASE 2: Hash-chain creation. Consider a chunk, Cx, that can
store at most n sensor readings, each of them of the format:
〈di, sj , tk〉. The sealing function checks each sensor reading
against data-capture rules and adds sensor state to each reading,
as: 〈di, sj , sj .state, tk〉. Since in this section we assumed that all
sensor data will be stored, the sensor state of each sensor reading
is set to 1. The sealing function starts with the first sensor reading
of the chunk Cx, as follows:
First sensor reading. For the first sensor reading of the chunk,
the sealing function computes a hash function on value zero, i.e,
H(0). Then, the sealing function mixes H(0) with the remaining

8

ℎ1 ← 𝐻 𝑑1 𝑠1 ԡ1 ԡ𝑡1 𝐻 0

ℎ2 ← 𝐻 𝑑2 𝑠2 ԡ1 ԡ𝑡2 ℎ1

ℎ3 ← 𝐻 𝑑3 𝑠1 ԡ1 ԡ𝑡3 ℎ2

ℎ4 ← 𝐻 𝑑4 𝑠1 ԡ1 ԡ𝑡4 ℎ3

𝒫𝐼𝑐𝑥 ← 𝑔𝑏 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸(ℎ4 ۩ 𝑆𝑒𝑜𝑐
𝑥)

Sealing function execution for

log-integrity

𝑑1, 𝑠1, 1, 𝑡1

𝑑2 , 𝑠2, 1, 𝑡2

𝑑3, 𝑠1, 1, 𝑡3

𝑑4, 𝑠1, 1, 𝑡4

𝑜1 ← 𝐻 𝑑1ฮ𝑡1 ℎ𝑢1 ← 𝐻 ԡ𝑜1 1

𝑜2 ← 𝐻 𝑑2ฮ𝑡2 ℎ𝑢2 ← 𝐻 ԡ𝑜2 1

𝑜3 ← 𝐻 𝑑3ฮ𝑡3 ℎ𝑢3 ← 𝐻 ԡ𝑜3 1

𝑜4 ← 𝐻 𝑑4ฮ𝑡4 ℎ𝑢4 ← 𝐻 ԡ𝑜4 1

ℎ𝑢𝑒𝑛𝑑 ← ℎ𝑢1۩ℎ𝑢2۩ℎ𝑢3۩ℎ𝑢4

𝒫𝑈𝑐𝑥 ← 𝑔𝑏 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸 ℎ𝑞
𝑒𝑛𝑑۩𝑆𝑒𝑜𝑐

𝑥

Sealing function execution for user’s

data/ query verification

Sensor data

after

passing the

enclave

Figure 6: Cryptographically sealing procedure executed on a chunk, Cx. Gray-shaded data is not stored on the disk. White-shaded data
is stored on the disk and accessible by SP. Figure shows proof-of-integrity only for one chunk, Cx; hence, some notations are abusively
used. Note that we used hi to denote a hash digest computed for verifying the entire sensor data, while hui denotes a hash digest
computed for verifying the user data or query results.

values of the sensor reading, i.e., sensor-id, device-id, sensor
state, and time, at which it computes the hash function, denoted
by H(d1||sj ||sj .state||tk||H(0)) that results in a hash digest,
denoted by hx

1 . After processing the complete first sensor reading
of the chunk Cx, the enclave writes cleartext first sensor reading of
Cx, i.e., 〈d1, sj , sj .state, tk〉 on the disk, which can be accessed
by SP.
Second sensor reading. Let 〈d2, sj , sj .state, tk+1〉 be the second
sensor reading. For this, the sealing function works identically
to the processing of the first sensor reading. It computes
a hash function on the second sensor values, while mixing
it with the hash digest of the first sensor reading, i.e.,
H(d2||sj ||sj .state||tk+1||hx

1) that results in a hash digest, say
hx
2 . Finally, the enclave writes the second sensor reading in

cleartext on the disk.
Processing the remaining sensor readings. Likewise, the second
sensor reading processing, the sealing function computes the hash
function on all the remaining sensor readings of the chunk Cx.
After processing the last sensor reading of the chunk Cx, the hash
digest hx

n is obtained.

PHASE 3: Proof-of-integrity creation. Since each sensor reading
is written on disk, SP can alter sensor readings, to make it
impossible to verify log integrity by an auditor. Thus, to show
that all the sensor readings are kept according to the pre-notified
data-capture rules, the sealing function prepares an immutable
proof-of-integrity for each chunk, as follows:

For each chunk Ci, the sealing function generates a random
string, denoted by gj , where i 6= j. Let Cv , Cx, and Cy be three
consecutive chunks (see Figure 7), based on consecutive sensor
readings. Let ga, gb, and gc be random strings for chunks Cv , Cx,
and Cy , respectively. The use of random strings will ensure that
any of the consecutive chunks have not been deleted by SP (will
be clear in §5.3). Now, for producing the proof-of-integrity for
the chunk Cx, the sealing function: (i) executes XOR operation on
ga, gb, gc, whose output is denoted by Sx

eoc , where eoc denotes
the end-of-chunk; (ii) signs hx

n XORed with Sx
eoc with the private

key of the enclave; and (iii) writes the proof-of-integrity for log
verification of the chunk Cx with the random string gb, as follows:

PICx = (gb,SignPRE
(hx

n ⊕ Sx
eoc))

Note. We do not generate the proof for each sensor reading. The
enclave writes only the proof and the random string for each chunk
to the disk, which is accessible by SP. Further, the sensor readings

having the state one are written on the disk, based on which SP
develops services.

Example. Please see Figure 6, where the middle box shows
PHASE 2 execution on four sensor readings. Note that the hash
digest of each reading is passed to the next sensor reading on
which a hash function is computed with the sensor reading. After
computing h4, the proof-of-integrity, PI , is created that includes
signed h4 ⊕ Sx

eoc and a random string, gb.

Note. g∗ for the first chunk. The initialization of log sealing
function requires an initial seed value, say g∗, due to the absence
of 0th chunk. Thus, in order to initialize the secure binding for the
first chunk, the seed value is used as a substitute random string.

5.2.2 Sealing Data for User Data/Service Verification
While capturing user-associated data, users may wish to verify
their user-associated data against notified messages. Note that the
protocol presented so far requires entire cleartext data to be sent
to the verifier to attest log integrity (it will be clear soon in
§5.3). However, such cleartext data transmission is not possible
in the case of user-associated data verification, since it may reveal
other users’ privacy. Thus, to allow verification of user-associated
data (or service/query result3 verification), we develop a new
sealing method, consists of the three phases: (i) chunk creation,
(ii) hash-generation, and (iii) proof-of-integrity creation. Chunk
creation phase of this new sealing method is identical to the
above-mentioned chunk creation phase 1; see §5.2.1. Below, we
only describe PHASE 2 and PHASE 3.

PHASE 2: Hash-generation. Consider a chunk, Cx, that can
have at most n sensor readings, each of them of the format:
〈di, sj , sj .state, tk〉. Our objective is to hide users’ device-id
and its frequency-count (i.e., which device-id is prominent in
the given chunk). Thus, on the ith sensor reading, the sealing
function mixes dj with tk, and then, computes a hash function
over them, denoted by H(dj ||tk) that results in a digest value,
say oi. Note that hash on device-ids mixed with time results in
two different digests for more than one occurrence of the same
device-id. Note that oi helps the user to know his presence/absence
in the data during attestation, but it will not prove that tampering
has not happened with the data. Then, the sealing function mixes
oi with the sensor state (to produce a proof of sensor state) of the
ith sensor reading, and on which it computes the hash function,
3The users, who access services developed by SP (as mentioned in §1), may also wish to
verify the query results, since SP may tamper with the data to show the wrong results.

9

𝑑1, 𝑠1, 1, 𝑡5, 𝑜1
𝑥

𝑑2 , 𝑠2, 1, 𝑡6, 𝑜2
𝑥

𝑑3, 𝑠1, 1, 𝑡7, 𝑜3
𝑥

𝑑4, 𝑠1, 1, 𝑡8, 𝑜4
𝑥

𝒫𝐼𝑐𝑥 ← 𝑔𝑏 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸(ℎ4 ۩ 𝑆𝑒𝑜𝑐
𝑥)

𝒫𝑈𝑐𝑥 ← 𝑔𝑏 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸 ℎ𝑞
𝑒𝑛𝑑۩𝑆𝑒𝑜𝑐

𝑥

𝑑1, 𝑠1, 1, 𝑡1, 𝑜1
𝑣

𝑑2 , 𝑠2, 1, 𝑡2, 𝑜2
𝑣

𝑑3, 𝑠1, 1, 𝑡3, 𝑜3
𝑣

𝑑4, 𝑠1, 1, 𝑡4, 𝑜4
𝑣

𝒫𝐼𝑐𝑣 ← 𝑔𝑎 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸(ℎ4 ۩ 𝑆𝑒𝑜𝑐
𝑣)

𝒫𝑈𝑐𝑣 ← 𝑔𝑎 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸 ℎ𝑞
𝑒𝑛𝑑۩𝑆𝑒𝑜𝑐

𝑣

𝑑1, 𝑠1, 1, 𝑡9, 𝑜1
𝑦

𝑑2 , 𝑠2, 1, 𝑡10, 𝑜2
𝑦

𝑑3, 𝑠1, 1, 𝑡11, 𝑜3
𝑦

𝑑4, 𝑠1, 1, 𝑡12, 𝑜4
𝑦

𝒫𝐼𝑐𝑦 ← 𝑔𝑐 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸(ℎ4 ۩ 𝑆𝑒𝑜𝑐
𝑦

)

𝒫𝑈𝑐𝑦 ← 𝑔𝑐 , 𝑆𝑖𝑔𝑛𝑃𝑅𝐸 ℎ𝑞
𝑒𝑛𝑑۩𝑆𝑒𝑜𝑐

𝑦

Chunk 𝒄𝒗 Chunk 𝒄𝒙 Chunk 𝒄𝒚
Figure 7: PHASE 3: end of chunk, Seoc , creation for three chunks. Observe that Sx

eoc = ga ⊕ gb ⊕ gc.

denoted by H(oi||sj .state) that results in a hash digest, denoted
by hux

i . After processing the ith sensor reading of the chunk
Cx, the enclave writes oi on the disk. After processing all the n
sensor readings of the chunk Cx, the sealing function computes
XOR operation on all hash digests, hux

i , where 1 ≤ i ≤ n:
hux

1 ⊕ hux
2 ⊕ . . . ⊕ hux

n, whose output is denoted by hux
end .

(Reason of computing hux
end will be clear in §5.3).

PHASE 3: Proof-of-integrity creation for the user. The
sealing function prepares an immutable proof-of-integrity for
users, denoted by PU , for each chunk and writes on the
disk. Likewise, proof-of-integrity for entire log verification, PI
(§5.2.1), for each chunk, the sealing function obtains Seoc ; refer
to PHASE 3 in §5.2.1. Now, for producing PU for the chunk
Cx, the sealing function: (i) signs hux

end XORed with Sx
eoc

with the private key of the enclave, and (ii) writes the signed
output with the random string of the chunk, gb, as PUCx .

PUCx = (gb,SignPRE
(hux

end ⊕ Sx
eoc))

Note. The enclave writes hash digests, oi for each sensor reading,
the proof for user verification, and the random string for each
chunk on the disk. Of course, the sensor readings having the state
one are written on the disk.

Example. Please see Figure 6, where the last box shows PHASE 2
execution on four sensor readings to obtain the proof-of-integrity
for the user, PU .

5.2.3 Sealing Mixed State Sensor Data
The protocol so far has assumed that all data has the sensor state
of one. We next consider how it can be generalized to a situation
when some sensor readings may not satisfy the data capture
rules (and hence, have the sensor state of zero). Recall that (as
mentioned in §4.2), the enclave decrypts the sensor data received
from the IFD and checks against the pre-notified data-capture
rules, and if a sensor reading captured by a sensor si does not
satisfy the data-capture rules, then the sensor state of the sensor
reading becomes zero. Please note that the sensor state of zero
does not indicate that the sensor is turned off.

Example 5.2.3.1. In a chunk, assume the following six sensor
readings, produced by two sensors s1 and s2.

〈d1, s1, 1, t1〉
〈d2, s2, 0, t2〉
〈d2, s2, 0, t3〉
〈d3, s2, 0, t4〉
〈d3, s2, 1, t5〉
〈d1, s1, 1, t6〉

In this case, there is no need to store all sensor readings
having state zero. However, doing it carelessly may provide an
opportunity to the adversary to delete all the sensor readings and

prove that such readings are deleted due to sensor state to be zero,
due to not satisfying data-capturing rules. Thus, to avoid storing
sensor readings having sensor state zero, we provide a method
below.

Informally, the sealing function checks each sensor reading
and deletes all those sensor readings for which sensor state is
passive, due to not satisfying data-capture rules. In this case,
it is not mandatory to seal each sensor readings, as mentioned
in §5.2.1. Thus, the sealing function provides a filter operation
that removes sensor readings whose device state is passive,
while storing sensor readings whose device states are active.
But, the sealing function cryptographically stores the data with
minimal information of sensor readings whose device states are
passive. Below we describe PHASE 2 for sealing mixed state
sensor data. Note that PHASE 1 (chunk creation) and PHASE 3
(proof-of-integrity creation) are identical to the method described
in §5.2.1.
PHASE 2: Sealing operation. Formally, to create hash-chain for
this case, the sealing function will do the following: For the first
ith sensor reading (for example, 〈dj , sk, 0, ti〉) whose state =
0, the enclave executes two operations: (i) sealing function that
computes a hash function, as: H(sj ||sj .state||tk||hi−1), whose
output is denoted by hi, and (ii) filter operation that deletes the
device-id dj and stores 〈sk, 0, ti〉 on the disk. Now for all the
successive sensor readings until encountering a sensor reading,
say l, with state = 1, all the sensor readings are discarded (not
stored on the disk), as well as, the hash function is not executed.
However, the sealing function computes the hash function on the
lth sensor reading (〈dx, sk, 1, tl〉), as: H(dx||sj ||1||tl||hi) and
stores lth sensor reading on the disk.

Example 5.2.3.2. Now, we apply the above-mentioned PHASE 2
on the sensor readings given in Example 5.2.3.1. Here, the enclave
does not store the second, third, and fourth sensor readings on
disk and delete them, while the remaining sensor readings will
be stored on the disk. In addition, the enclave will store only the
sensor device and its state of the first reading (i.e., the second
sensor reading) for which state was zero and generate verifiable
logs, such that the verifier can verify that the three entries has
been deleted due to not satisfying data-capturing rules. The
sealing function computes the hash-chain and proof-of-integrity
as follows:

h1 ← H(d1||s1||1||t1||H(0))
h2 ← H(s2||0||t2||h1)

h3 ← H(d3||s2||1||t5||h2)
h4 ← H(d1||s1||1||t6||h3)

PI ← 〈secret string , signPRE
(secret string ⊕ h4)〉

Note that here we compute a hash function on the first, second,

10

fifth, and last sensor readings, while do not seal the third and fourth
sensor readings, due to their passive (or zero) sensor states.4

5.2.4 Log-size Optimization
The above-mentioned procedure given in §5.2.3 regards the sensor
states and stores less amount of cryptographically sealed data on
the disk, by not storing consecutive sensor readings having sensor
state of zero. However, such improvement is limited, if the sensor
readings have state zero and one in an alternative sequence.

Example 5.2.4.1. Consider the following seven sensor readings
obtained from two sensors s1 and s2. Here, the state of sensor s2
is zero, due to not satisfying the data-capturing rules; however, the
state of sensor s1 is one.

〈d1, s1, 1, t1〉
〈d2, s2, 0, t2〉
〈d2, s1, 1, t3〉
〈d3, s2, 0, t4〉
〈d3, s1, 1, t5〉
〈d1, s2, 0, t6〉
〈d1, s1, 1, t7〉

In such scenario, the method given in §5.2.3 is not efficient,
since it will store all the sensor readings and produce hash digest
for each sensor reading, as follows:

h1 ← H(d1||s1||1||t1||H(0))
h2 ← H(s2||0||t2||h1)

h3 ← H(d2||s1||1||t3||h2)
h4 ← H(s2||0||t4||h3)

h5 ← H(d3||s1||1||t5||h4)
h6 ← H(s2||0||t6||h5)

h7 ← H(d1||s1||1||t7||h6)
Thus, in order to reduce the size of secured log for the case

when sensor readings have state zero and one in an alternative
sequence, below, we propose a method that store logs for each
sensor or each user-device.

Per sensor-based logging. We implement log-sealing procedure
(given in §5.2.1 and §5.2.3) on per sensor, i.e., we group the
sensor readings produced by the same sensor before producing
cryptographically sealed logs. This optimization method works as
follows, for n sensor readings and x sensors:
1) The enclave creates x buffers, one buffer for each of the x

sensors.
2) The enclave reads the n sensor readings from the disk and

decrypts them.
3) Each of the n sensor readings is allocated to one of the buffers

based on the sensor.
4) On each sensor reading allocated to a buffer, the enclave either

executes the method given in §5.2.1 if all the sensor readings
have state one, or executes the method given in §5.2.3 if the
sensor readings have state one and zero.

5) At the end, the enclave writes cryptographically secured logs
and proof-of-integrity for each buffer’s sensor log, on the disk.

Example 5.2.4.2. Now, we show how one can reduce the
size of secured logs for the seven sensor readings given in
Example 5.2.4.1 by keeping logs per sensor based. Here, the
enclave maintains two buffers: one for s1 and another for s2.
4We can only compress x > 1 continuous sensor readings, say 〈∗d, ∗s, ∗s.state =

0, ∗t〉 (where ∗d, ∗s, and ∗t denote any device-id, sensor-id, and time, respectively) to
produce a proof that such x readings have been deleted. However, we cannot compress
x sensor readings having ∗s.state = 1, since it disallows to verify service integrity
(e.g., a user query, how many time a user has visited a location, cannot be verified, if x
readings with ∗s.state = 1 have been deleted).

All the sensor readings of s1 are sealed using the method of
§5.2.1, and the sensor readings of s2 are sealed using the method
of §5.2.3. Thus, the enclave executes the following computation:
The first buffer dealing with the sensor readings of sensor s1:

h1 ← H(d1||s1||1||t1||H(0))
h2 ← H(d2||s1||1||t3||h1)
h3 ← H(d3||s1||1||t5||h2)
h4 ← H(d1||s1||1||t7||h3)

PIs1 ← 〈secret string , signPRE
(secret string ⊕ h4)〉

The second buffer dealing with the sensor readings of sensor s2:
h5 ← H(s2||0||t2||H(0))

PIs2 ← 〈secret string , signPRE
(secret string ⊕ h5)〉

Note that, here, we used the notations PIs1 and PIs2
to indicate the proof-of-integrity generated for sensors s1 and
s2, respectively. The enclave writes cleartext sensor readings
corresponding to the sensor s1, the tuple 〈s2, 0, t2〉, hash digests
h1, h2, . . . h5, and proof-of-integrity for both sensors PIs1 and
PIs2 , on the disk.

Issues. The above-mentioned method, while reduces the size of
cryptographically sealed logs, it faces two issues, as follows:
1) More sensors. It may happen that the number of sensors are

significantly more, thereby it is not easy to maintain buffers
for each sensor, due to a limited memory of the secure
hardware. In this case, we can still use the above method;
however, one buffer is responsible for more than one sensor.
For example, if there are four sensors, s1, s2, . . . , s4, and the
secure hardware can hold only two buffers, then the first buffer
might be responsible for sensor readings corresponding to two
sensors s1 and s2, and another buffer might be responsible for
sensor readings corresponding to the remaining two sensors.
To allocate sensor readings to buffers, one can use a hash
function on the sensor-id to know the buffer id.

2) Different-sized log. Note that when we create multiple
buffers for sensors, the enclave writes multiple chunks and
proof-of-integrity corresponding to multiple buffers. The size
of each chunk may not be identical, due to having a different
number of hash digests. It may reveal information to the
adversary that which sensor’s state is zero. To avoid such
leakage, the enclave may pad output produced for each buffer
with some fake values, and may include this information in
proof-of-integrity to show how many fake values are added.
For instance, in Example 5.2.4.2, the output corresponding to
the second buffer has only one hash digest (i.e., h5) while
the output corresponding to the first buffer will have four
hash digests (i.e., h1, h2, h3, h4). Thus, to write the same
size data for each buffer, the enclave may pad the output
corresponding to the second buffer with three fake hash digests
and write this information in the proof-of-integrity, as follows:
PIs2 ← 〈secret string , signPRE

(secret string ⊕ h5, 3)〉.
Note that while adding fake hash digests, the user does not
need to verify any fake digest, and thus, verifying only desired
data will reduce the verification time, as we will see in
Experiment 7 in §6.

Note: Per user-based logging. We can also apply the same
procedure for each user device-id to reduce the size of the
cryptographically sealed data, by creating buffers for each user
device id. This may reduce the verification time for user-related
data.

11

5.3 Attestation Phase
The attestation phase contains two sub-phases: (i) key
establishment between the verifier and service provider to retrieve
logs (§5.3.1), and (ii) verification of the retrieved logs (§5.3.2).

5.3.1 Key Establishment
The secure log retrieval is crucial for proof validation and
non-trivial in the presence of a de-centralized verifier model,
where anyone can execute a remote request to attest the
secured logs against the data-capture rules. Thus, before the log
transmission from the service provider to the verifier (i.e., a user
or an auditor), for each attestation request, the verifier’s identity
must be authenticated prior to the session key establishment.

Our log retrieval scheme is based on Authenticated Key
Exchange (AKE) protocol [7], where a verifier and the service
provider (i.e., prover) dynamically establish a session key (shown
in Figure 8). This dynamic key establishment provides forward
secrecy for all future sessions, such that, for any compromised
session in future, all sessions in the past remain secure. To
achieve these properties, we use SIGMA [7] protocol, which is
the cryptographic base for Internet Key Exchange (IKE) protocol.
The family of SIGMA protocols is based on Diffie-Hellman key
exchange [29]. We only show a 3-round version of SIGMA,
as it provides verifier/sender-identity protection during the key
establishment process. Recall that in our solution, the prover is
a centralized service provider, but the verifier can be anyone,
and therefore, we use this identity protection method to achieve
verifier’s identity privacy during the session.

Without the loss of generality, we, first, define the
Computational Diffie Hellman (CDH) [29]. During the session,
the verifier and the prover must execute the computations within
a cyclic group G = 〈g〉 that has a generator g of a prime order q.
According to the CDH assumption, the computation of a discrete
logarithm function on public values (g, gx, gy) is hard within the
cyclic group G. In particular, given the publicly known value g,
it is hard to distinguish gxy from gx and gy without knowing the
ephemeral secrets x and y.

Figure 8 depicts SIGMA-based communication flow between
a verifier and the service provider/prover. Initially, a verifier selects
a secret value x, computes gx as a public exponent, and sends it to
the prover. Similarly, the prover selects a secret value y, computes
gy , and receives the public exponent gx from the verifier. Next,
the prover computes a joint secret value as: e = gxy , and also uses
it to derive a message authentication code (MAC) key MAC k.

The prover composes a message structure as:
[gy,SP id,MAC k(SP id||gx||gy)], where gy is the prover’s
public exponent for session key generation, SP id is the identity
of sender/prover, and MAC k(SP id||gx||gy) is the message
authentication code generated on sender’s identity and all public
exponents used for session key derivation. Note that in order to
generate this MAC, a separate key MAC k is derived from the
session key e.

Next, the verifier receives this message and retrieves the public
exponent gy to generate a local copy of session key e, as well as,
the message authentication code generating key MAC k derived
from e. At this stage, both parties have locally computed a secure
session key e; however, there is still an identity disclosure required
from the verifier to prove that the freshly generated key e binds to
an authentic identity holder vid, where vid is the verifier’s identity.

Thus, the verifier sends a message, consisting of
[vid,MAC k(vid||SP id||gx||gy), 〈log query〉e], where

User (U) Service Provider (SP)
[gx]−−→

Compute session key e(gxy)← (gx, gy)

Compute MAC key MACk ← e(gxy)

Respond with MACk(SPid|gx|gy)
[gy,SPid,MACk(SPid|gx|gy)]←−−−−−−−−−−−−−−−−−−

Compute e and MACk
[Did,MACk(Did|SPid|gx|gy),log querye]−−−−−−−−−−−−−−−−−−−−−−−−−→

Retrieve (m1|m2).ts
[logs]e←−−−−

Proof re-construction for [logs]e
1

Figure 8: Secure log retrieval by the verifier.

MAC k(vid||SP id||gx||gy) is the message authentication
code on verifier’s identity vid, responder’s identity SP id, and
all public exponents exchanged so far, and 〈log query〉e is the
log query request protected by the freshly generated session
key e. This step binds all public key exponents exchanged with
the claimed identity holders together and marks the end of the
authenticated session key exchange process. The service provider,
then, retrieves the corresponding logs according to the log query
request in the last message and sends the log encrypted using the
session key e to the verifier.

5.3.2 Verification of Logs
This section presents procedures for log verification at the auditor
and a user.
Verification process at the auditor. Recall that the auditor can
verify any part of the sensor data. Suppose the auditor wishes to
verify a chunk Cx; see Figure 7. Hence, entire sensor data (the data
written in first box of Figure 6) of the chunk Cx, random strings
ga, gb, and gc (corresponding to the previous and next chunks
of Cx; see Figure 7), and proof-of-integrity PICx are provided to
the auditor. The auditor performs the same operation as in PHASE

2 of §5.2.2. Also, the auditor computes the end-of-chunk string
Sx
eoc = ga ⊕ gb ⊕ gc. At the end, the auditor matches the results

of hx
n ⊕ Sx

eoc against the decrypted value of received PICx , and
if both the values are identical, then it shows that the entire chunk
is unchanged.

Note that since SP transfers sensor readings of the chunk
Cx, random strings (ga, gb, and gc) and PICx to the user, SP
can alter any transmitted data. However, SP cannot alter the
signed SignPRE

(hx
n ⊕ Sx

eoc), due to unavailability of the private
key of the enclave, PRE , which was generated and provided
by the trusted authority to the enclave. Thus, by following the
above-mentioned procedure on the sensor readings of Cx, any
inconsistency created by SP will be detected by the auditor.

Verification process at the user. If the user wishes to verify
his data in a chunk, say Cx, the user is provided all hash digests
computed over device-id and time (oi, see the last box in Figure 6),
time, sensor state, random strings ga, gb, and gc (see Figure 7),
and the proof PU by SP. Since, the user knows her device-id, first,
the user verifies her occurrences in the data by computing the hash
function on her device-id mixed with provided time values and
compares against received hash digests. This confirms the user’s
presence/absence in the data. Also, to verify that no hash-digest
is modified/deleted by SP, the user computes the hash function on
the sensor state mixed with the received oi (1 ≤ i ≤ n, where n
in the number of sensor readings in Cx) and computes hux

end =
hx
1 ⊕hx

2 ⊕ . . .⊕hx
n. Finally, the user computes hux

end ⊕Sx
eoc and

compares against the decrypted value of PU . The correctness of
this method can be argued in a similar manner to the correctness
of the verification at the auditor.

12

0 50 100 150
Number of Days

0

5

10

15

20

Si
ze

 o
f D

at
a

(G
B

)

Size of Original Data (GB)
Size of Logs (GB)

Figure 9: Exp 1: Storage overhead.

6 EXPERIMENTAL EVALUATION

This section presents our experimental results on live WiFi data.
We execute IOT NOTARY on a 4-core 16GB RAM machine
equipped with SGX at Microsoft Azure cloud.

Setup. In our setup, the IT department at UCI is the trusted
infrastructure deployer. It also plays the role of the trusted notifier
(notifying users over emailing lists). At UCI, 490 WiFi sensors,
installed over 30 buildings, send data to a controller that forwards
data to the cloud server, where IOT NOTARY is installed. The
cloud keeps cryptographic log digests that are transmitted to
the verifier, while sensor data, qualifies data-capture rules, is
ingested into realtime applications supported by TIPPERS. We
use SHA-256 as the hashing algorithm and 256-bit length random
strings in IOT NOTARY. We allow users to verify the data collected
over the last 30minutes (min).

Dataset size. Although IOT NOTARY deals with live WiFi data,
we report results for data processed by the system over 180 days
during which time IOT NOTARY processed 13GB of WiFi data
having 110 million WiFi events.

Data-capture rules. We set the following four data-capture rules:
(i) Time-based: always retain data, except from ti to tj each day;
(ii) User-location-based: do not store data about specified devices
if they are in a specific building; (iii) User-time-based: do not
capture data having a specific device-id from tx to ty (x 6= i,
y 6= j) each day; and (iv) Time-location-based: do not store any
data from a specific building from time tx to ty each day. The
validity of these rules was 40 days. After each 40-days, variables
i, j, x, y were changed.

Exp 1. Storage overhead at the cloud. We fix the size of each
chunk to 5MB, and on average, each of them contains ≈ 37K
sensor readings, covering around 30min data of 30 buildings in
peak hours. Based on 5MB chunk size, we got 3291 chunks for
180 days. For each chunk, the sealing function generates two types
of logs: (i) for auditor verification that produced proof-of-integrity
PI of size 512bytes, and (ii) for user verification that produces
hashed values (see Figure 6) and proof-of-integrity for users PU
of size 1.05MB. Figure 9 shows 180-days WiFi data size without
having sealed logs (red color) and with sealed logs (green color).5

Exp 2. Performance at the cloud. For each 5MB chunk, the
sealing function took around 310ms to seal each chunk. This
includes time to compute PI , PU and encrypt them.

Exp 3. Auditor verification time. The auditor at our campus has a
7th-Gen quad-core i7CPU and 16GB RAM machine. It downloads
5The reason of getting more chunks is that during non-peak hours 5MB chunk can store
sensor readings for more than one hour. However, as per our assumption, we allow the
user to verify the data collected over the last 30min. Hence, regardless of the chunk is
full or not, we compute the sealing function on each chunk after 30min.

0 200 400 600
Number of Chunks

0

100

200

300

400

500

600

U
se

rV
er

ifi
ca

tio
n

Ti
m

e
(S

ec
on

ds
)

≈ 1-day data
≈ 0.244GB

≈ 10-days data
≈ 2.4GB

≈ 20-days data
≈ 4.8GB

User1 (1-core 1GB RAM)
User1 (1-core 2GB RAM)
User3 (2-cores 1GB RAM)
User4 (2-core 2GB RAM)
User5 (4-cores 16GB RAM)

Figure 10: Exp 4: Verification time.

the chunks from the cloud and executes auditor verification. The
auditor varied the number of chunks from 1 to 3000; see Table 1.
Note that to attest one-day data across 30 buildings, the auditor
needs to download at most 50 chunks, which took less than 1min
to verify. Observe that as the number of chunks increases, the time
also increases, due to executing the hash function on more data.

Number of Chunks 1 50 100 500 1000 3000
≈ duration (day) 30-60min 1-2 2-5 8-18 35-55 175
Verification time (seconds) 1 49 102 544 1160 4400

Table 1: The auditor verification time. Duration varies due to
different class schedules in buildings and working hours.

Exp 4: Verification at a resource-constrained user. To show
the practicality of IOT NOTARY for resource-constrained users,
we considered four types of users, differing on computational
capabilities (e.g., available main memory (1GB/2GB) and the
number of cores (1 or 2 cores)). Each user verified 1/10/20-days
data; see Figure 10. Note that verifying 1-day data, which is ≈
50 blocks, at resource-constrained users took at most 30s. As the
number of blocks increases, the computational time also increases,
where the maximum computational time to verify 20-days data
was < 10min. As the days increase, so does data transmitted to
the user, which spills over to disk causing an increased latency.
Also, we execute the same experiment on a powerful user having
4-core and 16GB machine. Note that as the number of core and
memory increase, it results in parallel processing and absence of
disk data read. Thus, the computation time decreases (see user 5
in Figure 10).

Chunk Size (KB) 5 100 1,000 5,000 10,000 25,000 40,000
Time (millisecond) 30 38 120 246 579 1,789 3,389

Table 2: Exp 5: Impact of the chunk size on log sealing execution.

Exp 5. Impact of the chunk size. We have selected chunk
size to be 5MB that can hold at most 30min WiFi data. Now,
we investigate the impact of chunk size on the sealing function
execution time, the verification time, and latency in obtaining the
most recent data. Table 2 shows that as the chunk size increases,
the chunk holds more data, and hence, executing sealing function
on a large-sized data takes more time. Similarly, a large-sized
chunk also increases the latency in obtaining the most recent data
(see Figure 11), since unless filling the chunk, the enclave cannot
produce the proof-of-integrity. We can also create a chunk having
only a single row; however, it will increase the size of secured
logs (see Figure 11). Observe that (in Figure 11), when the chunk
size is 5KB, the secured log size is ≈ 7GB, while when the chunk
size is 5MB, the secured log size is ≈ 4GB. Figure 12 shows
verification time also increases as the chunk size increases.

13

101 102 103 104

Size of Chunk (KB)

4500

5000

5500

6000

6500

7000
Si

ze
 o

f L
og

s (
M

B
)

Size of Logs

0

50

100

150

200

250

300

L
at

en
cy

 to
 V

er
ify

 (M
in

ut
es

)Latency to Verify

Figure 11: Exp 5: A tradeoff between log size and latency.

0 10 20 30 40
Size of Chunk (MB)

0

1

2

3

4

5

U
se

r V
er

ifi
ca

tio
n

Ti
m

e
(S

ec
on

ds
)

1-core 1GB RAM
1-core 2GB RAM
2-cores 1GB RAM
2-core 2GB RAM
4-cores 16GB RAM

Figure 12: Exp 5: User verification time with different log chunk
sizes.

Exp 6: Impact of communication. We measured the
communication impact when a verifier downloaded the sensor
data and/or sealed log for attestation. Consider a case when the
verifier attests only one-hour/one-day data. The average size of
one-hour (one-day) data in a peak hour was 14MB (250MB)
having 103K (1.2M) connectivity events, while in a non-peak
hour, it was 2MB (50MB) having 13.5K (320K) connectivity
events. When using slow (100MB/s), medium (500MB/s), and fast
(1GB/s) speed of data transmission, the data transmission time in
case of 1-hour/1-day data was negligible.

Exp 7: Impact of parallelism. The processing time at each server
can be reduced by parallelizing the computation. We investigated
the impact of parallel processing to seal a 5MB chunk when
having the number of threads 2 or 4 that took 322ms and 310ms,
respectively. Increasing more threads did not provide speed-up,
since the execution time increases due to thread maintenance
overheads. Note that we only parallelized the hash function
computation for PU , (while PI cannot be computed in parallel,
due to the formation of hash chains).

Exp 8. Impact of log optimization. We compare the impact
of per sensor- and per-user-device-id-based optimization methods
(denoted by OPT-SENSOR and OPT-USER in Figure 12, given in
§5.2.4) against the non-optimized method (denoted by NON-OPT

in Figure 12, given in §5.2.1). Since there were 490 WiFi access
points in our experiments, we pre-allocate 490 buffers in SGX
memory for 490 sensors, one buffer for each sensor. As a result,
each buffer size was ≈ 85KB. We also created buffers for groups
of devices to implement OPT-USER. Here, we again created 490
buffers and an identical group of user devices is allocated to a
buffer. Particularly, the enclave extracted the user device’s MAC

0 50 100 150
Number of Days

0

1000

2000

3000

4000

5000

Si
ze

 o
f D

at
a

(M
B

)

5KB Chunk
100KB Chunk
5MB Chunk
 40MB Chunk

Figure 13: Exp 8: Size of the secured log when using different log
sealing methods

address, hashed to get the buffer identity, and placed the sensor
reading to corresponding buffer. When the buffer got full, the data
in the buffer is cryptographically sealed and written on the disk.
Here, we compare storage overhead and verification time.

Figure 12 shows the storage overhead to store only
cryptographically-secured logs, when using OPT-SENSOR,
OPT-USER, and NON-OPT methods. Since OPT-SENSOR and
OPT-USER methods produce chunks of size 85KB, for a fair
comparison, we set the log chunk size to be 85KB in NON-OPT

method. Figure 12 shows that OPT-SENSOR and OPT-USER save
≈6.5% and ≈2.1% space, respectively, compared to NON-OPT

method.
We also investigated the benefit in the performance

improvement of user data verification, when using OPT-SENSOR,
OPT-USER, and NON-OPT methods. Note that when using
OPT-SENSOR and NON-OPT methods, a chunk may store data
associated with other users. Thus, it needs to verify additional
data, which does not belong to the user. In contrast, when using
OPT-USER methods, a user has to verify only the desired data that
belongs to him/her. It is clear that OPT-USER method requires
to verify less amount of data, and hence, less verification time,
compared to OPT-SENSOR and NON-OPT methods. Table 3 shows
verification time and number of chunks required to verify one-day
data at a resource-constrained user (1-core 1GB RAM). Observe
that OPT-USER method takes significantly less time compared to
NON-OPT method.

Method # chunks Verification time
NON-OPT 3012 31.2s
OPT-SENSOR 86 0.89s
OPT-USER 57 0.71s

Table 3: Exp 8: User verification performance when using different
methods.

7 CONCLUSION

This paper presented a framework, IOT NOTARY for sensor
data attestation that embodies cryptographically enforced
log-sealing mechanisms to produce immutable proofs, used for
log verification. Our solution improves the naı̈ve end-to-end
encryption model, where retroactive verification is not provable.
The service verification mechanism on failing at users allows users
to revoke services of the concerned IoT space. Therefore, a user
is not required to blindly trust in the IoT space, and we empower

14

the users with the right-to-audit instead of right-to-own the data
captured by sensors. IOT NOTARY is a part of a real IoT system
(TIPPERS) and provides verification on live WiFi data with almost
no overheads on users.

In addition, we are exploring the following improvement
to the current implementation of IOT NOTARY: Supporting
data-capturing rules where conditions depend on the value of
other sensors: The current implementation does not support
context-dependent rules, where the context is determined based
on data captured by other sensors. Extending the system to
handle such data-capture rules, e.g., “Do not capture my WiFi
connectivity data if I am the only person connected to the access
point,” is a non-trivial challenge.

REFERENCES

[1] N. Panwar et al., “IoT Notary: Sensor data attestation in smart
environment,” CoRR, vol. abs/1908.10033, 2019. [Online]. Available:
http://arxiv.org/abs/1908.10033

[2] S. Mehrotra et al., “TIPPERS: A privacy cognizant IoT environment,” in
PerCom Workshops, 2016, pp. 1–6, http://tippersweb.ics.uci.edu/.

[3] E. Fernandes et al., “Security implications of permission models in
smart-home application frameworks,” IEEE Security & Privacy, vol. 15,
no. 2, pp. 24–30, 2017.

[4] A. Rao et al., “Expecting the unexpected: Understanding mismatched
privacy expectations online,” in SOUPS, 2016, pp. 77–96.

[5] S. Madakam et al., “Security mechanisms for connectivity of smart
devices in the internet of things,” 2016.

[6] S. K. Aikins, “Connectivity of smart devices: Addressing the security
challenges of the internet of things,” in Connectivity Frameworks for
Smart Devices: The Internet of Things from a Distributed Computing
Perspective, 2016.

[7] H. Krawczyk, “Sigma: The ‘SIGn-and-MAc’ approach to authenticated
diffie-hellman and its use in the IKE protocols,” in CRYPTO, 2003.

[8] A. Ibrahim et al., “AID: autonomous attestation of IoT devices,” in SRDS,
2018.

[9] N. Asokan et al., “Seda: Scalable embedded device attestation,” in CCS,
2015, pp. 964–975.

[10] A. Ibrahim et al., “Darpa: Device attestation resilient to physical attacks,”
in WiSec, 2016, pp. 171–182.

[11] M. Ambrosin et al., “SANA: secure and scalable aggregate network
attestation,” in CCS, 2016, pp. 731–742.

[12] X. Carpent et al., “Remote attestation of iot devices via smarm: Shuffled
measurements against roving malware,” in HOST, 2018, pp. 9–16.

[13] M. Conti et al., “Radis: Remote attestation of distributed iot services,”
in Sixth International Conference on Software Defined Systems (SDS),
2019, pp. 25–32.

[14] J. Wang et al., “Enabling security-enhanced attestation with Intel SGX
for remote terminal and iot,” TCDICS, vol. 37, no. 1, pp. 88–96, 2018.

[15] D. C. G. Valadares et al., “Achieving data dissemination with security
using FIWARE and Intel software guard extensions,” in ISCC, 2018.

[16] J. Frankle et al., “Practical accountability of secret processes,” in
USENIX, 2018, pp. 657–674.

[17] S. Eskandarian et al., “Certificate transparency with privacy,” PoPETs,
vol. 2017, no. 4, pp. 329–344, 2017.

[18] W. Jiang et al., “Transforming semi-honest protocols to ensure
accountability,” Data Knowl. Eng., vol. 65, no. 1, pp. 57–74, 2008.

[19] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an
encrypted and searchable audit log.” in NDSS, vol. 4, 2004, pp. 5–6.

[20] S. A. Crosby et al., “Efficient data structures for tamper-evident logging.”
in USENIX, 2009, pp. 317–334.

[21] S. Zawoad et al., “Towards building forensics enabled cloud through
secure logging-as-a-service,” IEEE TDSC, vol. 13, pp. 148–162, 2016.

[22] E. Boyle et al., “Function secret sharing,” in EUROCRYPT, 2015.
[23] Y. Zhang et al., “vSQL: Verifying arbitrary SQL queries over dynamic

outsourced databases,” in IEEE SP, 2017, pp. 863–880.
[24] V. Costan et al., “Intel SGX explained,” IACR Cryptology ePrint Archive,

vol. 2016, p. 86, 2016.
[25] https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/

2017/09/8th-gen-intel-core-product-brief.pdf.
[26] W. Wang et al., “Leaky cauldron on the dark land: Understanding

memory side-channel hazards in SGX,” in CCS, 2017, pp. 2421–2434.
[27] L. Lamport, “Password authentication with insecure communication,”

Commun. ACM, vol. 24, no. 11, pp. 770–772, 1981.

[28] D. M’Raihi et al., “TOTP: Time-based one-time password algorithm,”
in RFC 6238 Internet Engineering Task Force. [Online]. Available:
https://doi.org/10.17487/RFC6238

[29] W. Diffie et al., “New directions in cryptography,” IEEE Trans.
Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

http://arxiv.org/abs/1908.10033
http://tippersweb.ics.uci.edu/
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/8th-gen-intel-core-product-brief.pdf
https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/8th-gen-intel-core-product-brief.pdf
https://doi.org/10.17487/RFC6238

15

APPENDIX A
FUTURE PASSWORD-BASED NOTICE MESSAGES

In §5.1, we described two procedures for notifying users about
data-capturing rules. Now, we describe a time-based notification
method. The authorization and validation of data-capture rule
declaration is based on Time-based One-Time Passwords
(TOTP) [28] such that the users are pre-initialized to receive
the notifications regarding any sensitive data collection until
an upcoming reference time tmax happens in the future. All
notifications from the time of initialization tinit until the future
reference time are chained through exactly in the timeline
sequence rounded over the equally distant interval of an epoch
size E . Once the chain of these pre-initialized notifications nears
the end, i.e., the current time tcur is same as the future reference
time tmax (as declared in the beginning); the service provider
initializes a new chain for the next set of notifications until a new
reference time t′max in future such that

t′max > tinit > tinit

Notification phase: The service provider selects an upcoming
reference time tmax for which all registered users will be notified.
The service provider computes a local secret passphrase such as
x and compute yinit = Hlength(x) where length is the length of
the chain as tmax − tinit/E and Hlength is the length successive
iterations of hash function H over the value x. The registered
users receive a tuple 〈yinit , tinit , tmax 〉 to compute the hash-chain
at each interval during tmax − tinit . Let us assume that the
service provider dispatch a notification during ith epoch Ei in the
hash-chain. The service provider computes yi = Hlength−i(x)
and send it to all registered users along with the message contents
and a HMAC over passphrase and the message contents.

〈yi,msg , HMAC(yi,msg)〉
Subsequently, all registered users retrieve the previously validated
yi−1 (which is yinit at the beginning of the hash-chain) and use
it to validate the current passphrase yi. Note that the users must
computeH(yi) and compare it to previously validated passphrase
yi−1. If H(yi) = yi−1 the user replace previously validated
passphrase yi−1 with the currently validated passphrase yi and use
it for next passphrase validation. It must be noted that x represent
the passphrase at the end of the hash-chain where tcur = tmax .

It must be noted that the usage of same hash function for
the passphrase computation is vulnerable to birthday attacks. In
addition the passphrase (hence the notification) remain valid and
irrevocable for an indefinite duration which makes it vulnerable
to leakage attacks. Therefore, to allow ephemeral passphrases
and the notifications that are exposed for a short duration only
a time-based counter is required. In particular, a primary hash
function and a time-based counter can be used here together
to derive as many separate hash functions as the length of the
hash-chain length. In that case the initial passphrase would be:

yinit = Hlength(Hlength−1 (. . . (H1(x)) . . .))

Also, for any notification validation during t ∈ (tinit , tmax] the
service provider must yield 〈yt,msg , HMAC(yt,msg)〉 such
that

yt = Htmax−t(Htmax−t−1(. . . (H1(x)) . . .))

In order to validate the passphrase and the notifications at time
tcur > tprev , the registered users must compute the hash-chain

from (tmax − tprev) to (tmax − tcur + 1).

