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ABSTRACT
Advances in sensing, networking, and actuation technologies have

resulted in the IoT wave that is expected to revolutionize all aspects

of modern society. This paper focuses on the new challenges of

privacy that arise in IoT in the context of smart homes. Specifi-

cally, the paper focuses on preventing the user’s privacy via infer-

ences through channel and in-home device activities. We propose

a method for securely scheduling the devices while decoupling the

device and channels activities. The proposed solution avoids any

attacks that may reveal the coordinated schedule of the devices,

and hence, also, assures that inferences that may compromise in-

dividual’s privacy are not leaked due to device and channel level

activities. Our experiments also validate the proposed approach,

and consequently, an adversary cannot infer device and channel

activities by just observing the network traffic.
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1 INTRODUCTION
The IoT devices are quickly becoming a pervasive and integral part

of modern smart homes [9]. The homeowner, typically, possesses

a heterogeneous set of devices ranging from wearable devices, in-

formation/entertainment devices to smart home appliances. These
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devices provide comfort/assisted-living and/or improve sustainabil-

ity, reduce costs, and reduce carbon footprint. For example, a Belkin

Wemo switch can automatically switch lights on/off and open/close

window shades based on the sunlight and time of the day. Likewise,

dampers in the AC vent can be partially/fully opened/closed to mod-

ulate airflow. Other devices popular in smart homes include Nest

cameras, smart door locks, Lenovo Smart Assistant, Amazon Echo,

Echo dot, Echo show, Alexa, Philips-Hue Bloom/Lightstrip Plus,

SteriGrip self-cleaning door handles, Unico smartbrush, Sensus

Metering Systems, and Logitech Circle 2 among others.

While the emerging smart home devices provide significant ben-

efits, the support for security in such devices is often limited to the

security offered by the original equipment manufacturer (OEM).

Lack of strong end-to-end architecture for security has led to de-

vices being vulnerable to a variety of attacks. For example, McAfee

Labs [1] found that the well-known Wi-Fi-enabled Wemo Insight

Smart Plug has critical security vulnerability due to Universal Plug

and Play (UPnP) protocol library it uses, which, due to design flaws,

enable attackers to execute remote codes on this smart plug. Note

that this attack is not just limited to disturbing smart plug’s nor-

mal operations such as shutting it down unexpectedly, but could

also use the smart plug as an entry point for a larger attack in the

network. Further, [1] showed the usage of a compromised WeMo

switch as a middleman to launch attacks against a TCL smart TV.

The privacy vulnerabilities introduced by smart home devices

are even more challenging. IoT devices capture, store, share, and

(depending upon the underlying computational architecture) out-

source personal data that can lead to inferences about individual’s

habits, behavior, family dynamics etc. Challenges arise since privacy

leakage can occur through direct data leakage, as well as, through

inferences based on device actuations, interactions, and schedules.

For instance, the timing of the actuation of a coffee machine, if

leaked can allow an adversary to determine when a family wakes

up. Likewise, locking and unlocking schedule of door locks can en-

able leakage of the time when no one is at home, etc. While privacy

challenges from data leakage can be prevented by encrypting de-

vice data and network payloads, inferences about device actuation

and schedule are significantly more complex to hide due to leakage

from network traffic patterns at the channel level, at the hub/router

level or at the cloud level.

For example, Figure 1 shows the channel traffic generated by

three different devices. The figure clearly shows that each device

generates a very distinct traffic pattern and, the adversary, having

access to the channel traffic can figure out which device is activated

leading to potential inferences about user’s personal habits. Note

that such an inference, since it is independent of the actual network

payload, is not prevented by encryption.

Inferences from monitoring channel traffic can also arise due to

the characteristics of the current network protocols. For instance,

in the widely used 802.11 Wi-Fi protocol, while a message payload

is encrypted in a password-protected network, the MAC addresses
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Figure 1: Channel activity for home devices.
The figure above shows the channel activity for three home devices: CloudCam, Google Home,

and Belkin WeMo. The CloudCam shows a peak in the channel activity (up to 400 KB/s traffic rate)

as the user enters the home, moves inside the home or exits the home. The Google Home shows a

peak in the channel activity (up to 250 KB/s traffic rate) whenever a user initiated a voice

command for the light bulbs to turn on/off. Similarly, a bi-state WeMo switch peaks during the on

state and creates a channel activity lesser than 20 KB/s.

of both the sender and receiver are in cleartext. This is to prevent

requiring every potential device on the network to have to decrypt

a message just to determine if the message is intended for the de-

vice. The leakage of the sender/receiver MAC address, coupled with

the fact that manufacturer’s information is commonly encoded in

plain-text device identifier, can lead to leakage of the identity of

the device from the network traffic, which, in turn, can lead to an

attack on user’s privacy. For example, the MAC address of Amazon

CloudCam security camera used in our experiment to transmit

video footage over Wi-Fi is F0-81-73-23-CC-75. The first 3 bytes

of such a MAC address (e.g., F0-81-73) can be searched in the pub-

licly accessible IEEE Organizationally Unique Identifier (OUI) [2]

dataset to find the vendor related information (e.g., Amazon device).

Furthermore, by monitoring the device’s traffic patterns and the

fact that Amazon only manufactures a limited range of devices (e.g.,

Kindle, CloudCam, Echo, etc.), it is easier to infer the device type

by merely overhearing the traffic.

In this paper, we study privacy leakage that may occur from

device activity and network channel traffic analysis and develop

protocols that can be used to prevent such leakages. We focus, in

particular, on device workflows that are common in smart homes.

By a device workflow, we refer to a coordinated sequence of device

actuations. Device workflows may arise in a triggered (or synchro-
nized) manner or in a scheduled manner. The synchronized work-

flows arise as a result of one device resulting in an actuation of the

other. For instance, sensors determining occupancy change in a

part of the building may result in HVAC controls /AC vents to be

redirected to the occupied areas and to close other vents that cover

areas with no occupancy. Likewise, light intensity sensors coupled

with thermal sensors may detect the amount of sunlight entering

the room and accordingly lower/raise the sunshades based on the

homeowner’s preference. A scheduled workflow, on the other hand,

is scheduled actuation of a set of devices that occur at specific time

intervals of each other based on a schedule. For instance, switching

on a coffee machine at a specific time in the morning followed by

warming of the car seats a given time interval following that, and

then opening/closing of door locks following the actuation of the

car seat warmer might be on a schedule. A more elaborate example

of a scheduled workflow could be a homeowner’s routine related to

returning. A homeowner may schedule the smart car to self-drive to

home to initiate the workflow. Fifteen minutes after the start of the

workflow, the heating/cooling system may start off to ensure that

the home is at the comfortable temperature on arrival. Likewise,

half an hour after the trip starts the oven may be set to a pre-heat

and the laundry machine turns on if the load is detected.

We focus on the scheduled workflows in this paper since such

workflows require hiding the identity of the devices being actuated

but also their schedule. As will become clear, mechanisms to prevent

leakage for scheduled workflows will also prevent leakage from

triggered workflows. Furthermore, the scheduled activities can lead

not just to adversary learning user’s past behavior but also their

future activities which can lead to more severe consequences.

The problem. This paper deals with a problem of avoiding infer-

ence attacks on the scheduled workflows in a home network. The

workflows can be identified through coupling between the channel
and device activity. Basically, there are two crucial concepts that are
subject to privacy violations: workflow (i.e., the specific order of

device actuation) and workflow execution (i.e., duration in which

the devices coordinate, and the resulting device actuations unfold).

Our problem statement considers hiding both the workflow and

the execution of the workflow.

The privacy violations can occur as a result of two threats: first,

overhearing the channel activity as a means to infer device activity

pattern, second, accessing the device temporarily and be able to

analyze the state of workflow execution. In the latter case, the

adversary can read the sent/received messages or the internal state

of the device. Both of the above threats may assist the adversary to

predict users’ activities, such as presence/absence, arrival/departure,

and localization etc.

Contributions. Our contributions are twofold:
(1) A new architecture for in-home communication among the de-

vices and the hub through passing a token carrying commands.

The token passing communication model decouples the channel

and device activities so that the devices interact with the hub and

the other devices without revealing the communication pattern.

In addition, this architecture is also useful for secure data upload

from devices to the hub, while also hiding the device footprints

that has generated the data.

(2) We provide an owner-defined pre-scheduling mechanism for all

devices that are connected with the hub in a pre-defined topology.

The proposed approach uses a single message transmission for

all N devices while ensuring that the in-home communication

remains peakless. The scheduling mechanism is secure against

a computationally unbounded adversary and, also, verifies the

delay between each device actuation.

Outline. The paper proceeds as follows: Section 2 provides the

system setting, the adversarial model, security goals, and design

requirements. Section 3 provides our proposed scheduling algo-

rithm for home networks. Section 4 provides proofs of security and

privacy. Finally, Section 5 provides an experimental evaluation of

the approach. All notations are given in Table 1.
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Notations Meaning Notations Meaning

O A homeowner H Hub

Oid Owner’s identity Hid Hub identity

D Device Did Device identity

OPK Owner public key OSK Owner secret key

HPK hub public key HSK hub secret key

DPK device public key DSK device secret key

cl partially ordered l commands mi
puzzle message for i th device

n modulus a random chosen integer

t̂ time complexity of puzzle t ′ time to decrypt command

S capacity of puzzle solver S′ enhanced capacity

Sign(OSK ) Signature using secret-keyOSK N number of devices

Ek encrypted key k Ez encrypted command z

ks static key
nPn n permutations

ϕ(n) Euler’s totient on n bo overwritten data bits

bд device generated data bits br random data bits

p large prime number q second large prime number

tval command validity time tcur current time

t ircv token receiving time t ifwd token forwarding time

tHbeg token round beginning time at hub tHend token round ending time at hub

tdiff allowed clock drift time tcom total computation time

tAcom puzzle computation time by adversary ϵ negligibly small value

A adversary â malicious commands

T token H One-way hash function

Data field data upload field btoggle toggle bit string field

R partial order E′ partially ordered set

Table 1: Notations

2 PRELIMINARIES
This section presents the system model, the adversarial model,

inference attacks on the user privacy, an overview of our proposed

approach to prevent inference attacks, design requirements, and

building blocks of the proposed algorithms.

2.1 The Model
Network assumptions. We consider a homeowner, O , who owns a
collection of N (D1,D2, . . . ,DN

) heterogenous smart home devices

that provide different functionalities to the owner. Each device Di

has a unique identity, denoted by Di
id . All devices might possess

heterogeneous hardware/software underneath, and be located on

different spatial (devices that are not in the line-of-sight) dimen-

sions. These ad-hoc devices can shift in space in the smart home,

and hence, might have a different set of peer devices at different

time intervals. We assume that each device possesses a read-only

hardware clock, and due to the ad-hoc nature of devices, we assume

a clock drift within the bound tdiff such that two clocks cannot

differ beyond the tdiff amount of time.

The owner initializes the devices and a controlling hub, H , using

proper security mechanisms. We will list our assumptions about the

underlying security mechanism below. In our model, the network

is configured as a ring topology, which poses an ordering among

devices, unlike the model that the current smart home devices use,

where the owner communicates directly to the desired device via

the hub. This ring topology could be built directly among devices

and hub, if the communication protocols they use have P2P commu-

nication capability, like Zig-Bee, BLE, and Wi-Fi. Alternatively, it

could be built as an overlay on top of a star topology network, like

Wi-Fi infrastructure mode. In this case, if a device tries to forward

the message to the next device in the proposed ring topology, then

it needs to first send the message to the hub, and the hub, then, di-

rectly forwards the message to its next device. Note that we do not

discuss a failure-resilient ring topology and existing fault-tolerant

schemes can be leveraged here.

The owner sends workflows to the home devices through the

hub. After receiving a workflow, the device gets actuated, stores

its corresponding command, and forwards the workflow received

from the previous device to the next device in the topology. After

executing the command, the device may generate the data (for

example, Nest camera starts recording and sends data whenever

motion is detected). We use the ring topology to send this data to

the hub that may be stored at the hub or may be transmitted to the

cloud.
1
In this paper, we use the words ‘command execution’ and

‘workflow execution’ interchangeably.

Token. In our ring topology, we circulate a token that has three

fields: (i) command field, which carries a computational puzzle and

the workflow, (ii) data field, which carries the data generated by

devices to deliver to the hub, and (iii) toggle bit string, which is

used to indicate which device has generated the data to the hub.

Details of the token are given in Section 3.

Security assumptions. Each device, hub, and homeowner possess the

corresponding signing key-pair, i.e., (Di
SK ,D

i
PK ), (HSK ,HPK ), and

(OSK ,OPK ), respectively. We do not assume an arbitrary behavior

from the owner or the hub. The homeowner and hubmutually verify

the identities of each other through digital signatures in order to

build the trust between them. Therefore, the hub and the owner

trust each other, and an adversary cannot compromise either the

homeowner or the hub. Further, the hub and devices build their own
trust that is also based on the knowledge of a certified public-private

key-pair of home devices.

2.2 Adversarial Model
The devices execute user-defined commands or workflows, as men-

tioned previously. The adversary wishes to learn the commands or

workflows and the execution of workflows based on the encrypted

network traffic to infer the user privacy. This type of adversary is

similar to the adversary considered in [6, 14]. Thus, the adversary

has access to the secure (encrypted) messages flowing among the

devices and the hub/homeowner. Further, we assume that the adver-

sary knows the number of smart devices in the home. Based on this

information, the adversary aims to learn: (i) the device activities,
and (ii) coupling between the channel and the device activities.

However, the adversary cannot inject any fabricated messages over

the channel to assess the state of the devices.

Further, we assume that the adversary may gain a short-term

physical access
2
to the device, and hence, can retrieve the device

1
Recall that we are not dealing with how the data will be transmitted from the hub to

the cloud without revealing anything. Our solution hides any activity within the home,

i.e., how the data will be transmitted by the device to the hub without any privacy

violations.

2
For example, an inspection authority has to visit the home for a periodic inspection

in the absence of the homeowner. In this case, the inspection might be related to

any leakage detection, maintenance issues, insurance issues, etc. This short visit to

the home for an inspection allows them to monitor and check home devices as well.

However, based on our proposed solution, those inspecting authorities would not be
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state or messages. The objective behind gaining a short-term access

to any device is to predict the future workflows of devices to infer

the user activity. Our objective is to prevent the adversary to know

(i) which device has received the messages at which time, (ii) when
would a device execute the command, and (iii) which devices have

executed the command at which time
3
.

Adversarial view and inference attacks.When the user wishes

to execute any command at a smart home device, an adversary

knows which device received the message from the user at what

time due to the network traffic generated by the user. Note that

this information is revealed, because in network protocols such as

802.11 MAC addresses or the device identifiers are transmitted in

cleartext, and only the payload is encrypted, as mentioned in Sec-

tion 1. Further, the device may also produce some data in response

to the requested message, and this also reveals to the adversary

which device has generated the data at what time. We refer such in-

formation as the adversarial view, denoted by AV : AV = Inc ∪Opd ,
where Inc refers to the command given to the device at some time

and Opd refers to the data generated by the device after executing

the command.

Users command Adversarial view

Inc Opd
For D1 E(c1), D1, t1 No

For D2 E(c2 ), D2, t2 E(d2 ), D2, t3

Table 2: Adversarial view.

For example, consider that there are two devices, say D1
and D2

,

in the home. In Table 2, the first row shows that the user transmits

a command to the device D1
. Though the device D1

receives this

encrypted command, denoted by E(c1), the adversary knows that a

command is received at time t1 by the device D1
and the device D1

has not generated any data in response the command. The second

row shows that the adversary knows the device D2
receives an

encrypted command E(c2) at time t2 and generated encrypted data

E(d2) at time t3. Hence, simply based on the above characteristic of

the arrival of a message and generation of data, the adversary can

determine which device was actuated.

2.3 Preventing Inference Attacks: overview of
our Approach

In order to prevent inference attacks, we develop an approach that

decouples the device and channel activities. In short, the approach

provides an ability to pre-schedule a set of commands for home

devices, where the homeowner defines: (a) what should be the

workflow/schedule of home devices, and (b) when should the de-

vices execute a workflow. Informally, the proposed approach works

as follows:

(1) The owner invokes the hub by sending an encrypted schedule or

workflow of the devices. Here, the hub authenticates the owner to

validate the encrypted schedule. This step provides a guarantee that

no channel spoofing or message re-transmission have occurred.

able to analyze the current state of the devices or the activity pattern of the devices in

near future.

3
The command execution could enable the device to produce visible or auditory cues

such as blinking lights or machine being activated which, in turn, may leak the state

of the device. Such inferences from physical cues are outside the scope of the paper.

We assume that the adversary does not have access to such device data.

(2) After a successful authentication phase, the hub creates a token

(T ) to circulate the schedule to be executed by devices. This token

rotates continuously in the topology. Note that in the token, de-

vice identifiers or MAC addresses are also encrypted. Further note

that whenever the user wishes to transmit a schedule to devices,

the immediate next round of token originated by the hub carries

the encrypted schedule, and after that, the encrypted schedule is

replaced by a random message to maintain the token size constant.

(3) On receiving the token, each device retrieves the encrypted sched-

ule that carries device-specific commands. Each device must com-

plete a computation task before executing the original command.

This computation task is referred to as a puzzle throughout the

paper. Then, the device must check the puzzle validity time tval , by
using the current time tcur , and the allowed clock difference tdiff .
If the timer has not expired yet, the device decrypts the message,

executes the puzzle to retrieve the real command to be executed.

(4) As soon as a device finishes the command execution, it may gen-

erate data to be uploaded at the hub (as mentioned in Section 2.1).

Now to hide which device has generated the data, each device fol-

lows a request-based approach, where a device Di
flips the ith bit

inside one of the fields of the token to indicate the need to upload

freshly generated data in an anonymous manner. As a result of ith

bit flipping, the hub knows that the device Di
has requested the

data upload, and in the next token cycle, the device Di
appends the

data inside a dedicated field of the token.

Note that since a constant size token flows regularly in the topology

of the home devices, an adversary observing the network traffic

cannot distinguish which device has received a command at which

time (due to step 2) and which devices have generated the data

(due to step 4). Hence, based on this approach, the adversarial view

for each round of token has the same information, which prevents

inference attacks based on the devices and channel activities.

2.4 Security Goals
This section describes the security properties for preventing any

inferences about the workflow and their executions from the ad-

versary. Let us assume that an adversary knows some auxiliary

information about the devices and the topology such as the num-

ber of devices and the types of devices. However, this auxiliary

information does not increase the probabilistic advantage that an

adversary gains over any instance of the protocol. In particular,

an adversary cannot reveal the workflow or the execution time of

the workflow, i.e., which devices execute the command or when

does a device execute the command. The probabilistic advantage of

an adversary, denoted by Adv(A), is derived through the security

properties given below.

Authentication is required during the workflow release from the

homeowner to the hub. This would require a mutual authentication

between the (mobile device held by the) homeowner (to dispatch

the workflow) and the hub (to circulate the workflow anonymously).

Note that establishing the shared secret between the homeowner

and the hub is a one-time process, which is carried each time the

homeowner invokes a new workflow. Here, the homeowner pro-

duces a signature, say Sign, on the ordered commands (cl ) in any

workflow by using its secret-key OSK . Thus, the hub must reject

any other messages signed by a different key, say OSK ′ .
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Pr [(OSK , cl ) → Sign] ≥ 1 − ϵ
Note that ϵ is negligibly small and an adversary cannot produce

a verifiable signature Sign on cl by using OSK ′ instead of OSK .

Anonymity is required during the consistent circulation of the en-

crypted commands such that (i) no channel activity can be mapped

to a device activity, and (ii) no inference on device activity can be

mapped to the device generated data, i.e., which device is sending

data at a specific time. As shown below, the probability of dis-

tinguishing two different tokens (T ,T ′) each carrying different

messages (mi ,mj
) for different devices (i, j) is negligible.
Pr [T (mi )] − Pr [T ′(mj )] < ϵ

Similarly, the probability of distinguishing a token T carrying

the random databr or carrying the overwritten databo , is negligibly
small. Therefore, a token carrying the random data inside the data

field and another token carrying the overwritten data (after data

generation) inside the data field are indistinguishable, hence, solely

based on the token data field no inferences can be derived.

Pr [T (br )] − Pr [T (bo )] < ϵ

Verifiable delay An adversary cannot infer the information about

the device execution ahead of time. Let t̂i be the time a device

would execute even when the adversary has temporary access to

the device.

Pr [tAcom |state] ≊ Pr [tAcom]
The probability of an adversary finishing the computation task

earlier, when it gains temporary access to the device state, is ap-

proximately same as when the adversary does not have access to

the device state. In addition, an adversary cannot outpace a de-

vice that requires t̂ i time to complete the computation task, i.e.,

Pr [tAcom < t̂i ] < ϵ .
An adversary gaining access to the device cannot retrieve the

information required for device actuation, i.e., the computational

task to be executed prior to its actuation. We have described a game-

theoretic approach in Section 4 that shows the overall probabilistic

advantage of an adversary is negligibly small.

2.5 Challenges and Solutions
Implementing reliable ordering for device actuation is to provide

a secure and self-executing state of devices at a pre-defined time

for protecting the owner privacy is deceptively non-trivial. Below,

we discuss the challenges we encountered and describe how we

addressed them.

C1.Anonymous trigger from thehub to devices.Asmentioned

before, we need to mask the channel activities, device activities,

and the coupling between both the channel as well as the devices.

Note that in this context, the encryption techniques merely hide

the meaning of the message across the channel, not the fact that to

which device this message belongs to, and hence, it reveals the user

activity. In addition, the solutions-based on traffic shaping4, which
incur excessive communication and latency overhead, also fail to

decouple the device to channel activities.

Solution. To address this challenge, the distribution of user-

commands to each device in the home network is based on a pre-

defined topology, e.g., ring, where a token rotates continuously

4
The traffic shaping solution keeps the constant traffic rate based on a threshold, such

that any excessive traffic above the threshold is delayed through a buffer and below

the threshold requires additional dummy packets.

within the one directional (1-D) ring topology.
5
Thereby, channel

activity remains consistent and independent of the devices actuated

as a result of the workflow. In our context, the token (T ) has three

fields: (i) command field, which contains the encrypted commands

corresponding to each device, (ii) data field, which contains the

device generated data, and, (iii) a toggle bit string field, which

contains a N bit string, where each bit denotes a unique device

in the topology. This toggle bit string is used to indicate that a

device is interested in uploading the freshly generated data during

upcoming token arrival at the device. Since the order of device

actuation reveals crucial information about the user activity inside

the home, our token-based solution guarantees a secure ordering

among devices while executing the commands. In addition, the

device actuation is controlled in a manner that a recipient device

itself cannot pre-decode and/or pre-pone the command execution.

C2. Command execution and verifiable ordering. After mask-

ing the channel activity through a constantly rotating token, the

next step is to have a verifiable ordering of command execution at

each device. Each device receives a command through the token.

Now, these devices can decrypt and execute the command imme-

diately. However, it again enables the channel to device activity

mapping. Therefore, the next challenge is to insert an artificial delay

between a device receiving the commands, and then, executing the

commands at an appropriate time, without relating to any specific

channel activity. The artificial delay enables a correct execution

order at each comparable or non-comparable device
6
.

Solution. The protocol message from the homeowner to hub

includes the ordered commands (cl ) that pass through a device

Di
to another device Di+1

using the anonymous token circulation.

The token is encrypted using a shared symmetric key between

the hub and the devices in the topology. The recipient device Di

retrieves the encrypted command (mi
) from the command field

of the token and begins with a puzzle computation. Note that the

devices do not execute the commands immediately after receiving

(time-locked) commands. In particular, these devices wait for a

pre-defined amount of time before executing the command, such

that neither the artificial delay at each device can be known by

the adversary in advance, nor the devices can control this artificial

delay to postpone or prepone the scheduled commands. However,

this waiting period is not idle, and the devices resume on some

computational task.

C3. Anonymous response from devices to the hub. Once the
devices have received the commands in an anonymous manner,

they may generate some data as a result of command execution.

However, uploading this data immediately would reveal the device

activity patterns. Clearly, this periodic channel activity (in the form

of traffic) relates to a specific device that had executed the command

recently. Therefore, the upstream data upload on the hub should

be anonymous too.

5
In order to leverage a continuous channel-activity as a means to hide the actual

channel-activity, the ring topology is efficient as compared to star alignment. In

addition, one can also use the mesh-topology with anonymous-routing that requires

asymmetric-key cryptography overheads at each relay-node while sending token

between a source and a destination.

6
The comparable-devices are those that are defined under certain relative order in a

workflow. The incomparable-devices are independent and are not restricted under any

relative order with respect to other devices.
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Solution. In our scheme, each device is required to send a re-

quest for data upload to the hub using the rotating token, which

contains a toggle bit string field of size N bits, where each bit repre-

sents a unique device in the topology. The ith toggled bit indicates

that the device Di
has generated the data and is ready to anony-

mously transmit the data by using the data field of the token. The

data field is used to carry the device generated data without re-

vealing the data and the sender of the data. The data field contains

random data as long as there is no request from the devices to send

the data to hub. The details of data upload phase from device to

hub will be clear in step 4, given in Section 3.

2.6 Building Blocks
This section provides a brief overview of basic building blocks used

to develop the proposed solution as detailed in Section 3.

RSA puzzles. The verifiable delay regarding device actuation is

based on cryptographic RSA puzzles [12]. These time-bounded puz-

zles are useful for the applications that require security against

the hardware parallelization attacks (i.e., bypassing a security solu-

tion by running a mathematical problem on different hardware in

parallel) through Application Specific Integrated Circuits (ASIC).

Accordingly, the puzzle solution is based on inherently sequential

operations such asmodular exponentiation. Let us assume that t ′ be
the time to release an encrypted message. Also, a device is capable

of computing S number of square operations modulo n per second.

Thus, the puzzle requires sequenced exponentiations of (a2
t̂
mod

n) where n = pq is publicly known RSA modulus and t̂ , p, q and

ϕ(n) = (p − 1)(q − 1) remains secret. In particular, t̂ = St ′ denotes
the difficulty level of the puzzle for a specific device. Therefore,

the computation of this modular exponentiation operation requires

either the inherently sequential execution of these operations or to
solve the integer factorization problem.

In the proposed scheme, the RSA puzzles enable an artificial yet

verifiable delay with respect to command execution. To compensate

this delay an adversary must know the private key of a device and

then invest the same time as the victim device was supposed to

invest in, for the puzzle computation. In particular, the adversary

can always lengthen the delay (which is easily detectable during the

puzzle validity check), but cannot shrink the delay due to inherently

sequential operations.

Order-preserving bijection. The order-preserving bijection guar-
antees an instance of the totally ordered set elements as derived

from the partially ordered set of the same elements. In particular,

the bijection provides a unique sequence of the totally ordered set

elements. Let us assume there is a partial order relation R = {≤}

on set elements E = (e1, e2, e3, e4) such that R is: reflexive, i.e.,

eiRei ; antisymmetric, i.e., if eiRe j and e jRei then ei = e j ; and

transitive, i.e., if eiRe j and e jRek then eiRek . In addition, the par-

tially ordered set E ′ = ((e1, e2), (e3, e4)) under relation R = {≤}
has a unique minimal and maximal element. Therefore, an order-

preserving bijection generates a linear ordering of elements in set

E ′. Essentially, this linear extension generates a permutation order

of the elements in a given partially ordered set E ′. All of those

permutation sequences in which ei appears before e j given that

(ei ≤ e j ) ∈ E ′ are a valid candidate as per any totally ordered

set element sequence. The reliable ordering of device actuation

Hub 𝐷1 𝐷2 𝐷𝑁

𝑡𝑟𝑐𝑣
1 𝑡𝑟𝑐𝑣

2𝑡𝑏𝑒𝑔
𝐻 𝑡𝑟𝑐𝑣

𝑁

𝑡𝑐𝑜𝑚
1

𝑡𝑐𝑜𝑚
2

𝑡𝑐𝑜𝑚
𝑁
𝑡𝑐𝑜𝑚
𝑁−1

Figure 2: Device ordering on the timeline.
is guaranteed through the linear extension of the owner-defined

schedule even when the application host is unavailable.

3 DECOUPLING CHANNEL ACTIVITY FROM
DEVICE ACTIVITY

This section provides the details of our proposed protocol for decou-

pling channel activities from device activities. First, we illustrate

the device-to-device interaction through an example as below:

3.1 Example
Consider N number of devices (D1,D2, . . . ,DN

) that are connected

through a hub (H ), as shown in Figure 2. Let sion (and s
i
off ) be the on

(and off) state of a device i . The ownerO can create a partial ordering

for devices such as ⟨(D1,D2,D3), (D4,D5), . . . , (DN−1,DN )⟩ based

on their states, e.g., ⟨(s1on, s
2

off , s
3

off ), (s
4

off , s
5

on), . . . , (s
N−1
off , s

N
on)⟩ that

shows the device D1
must change its state to on, i.e., s1on, before

the devices D2
and D3

change states to off, i.e., s2off and s3off . Sim-

ilarly, the device D4
must change its state to off, i.e., s4off , before

the device D5
changes its state to on, i.e., s5on.

7
After creating the

partial order of devices, the owner sends a message to the hub that

sends the message (shown in red color) to one of the devices, as

shown D1
in Figure 2. We refer to the message from the hub to

devices as a token. Each device i receives the token at time t ircv ,
forwards the token, and begins computation at time t icom. The bot-
tom part shows when each device receives the token in a sequence

as (D1,D2, . . . ,DN−1,DN
). Note that due to user-defined partial

order of device actuation ⟨(D1,D2,D3), (D4,D5), . . . , (DN−1,DN )⟩,

the devices across the partial orders are mutually incomparable
8
.

In Figure 2, thick black line (for each device) shows that the device

is having the token and waiting for the predefined time (given in

the token) for its activation, and the green line shows when the

devices start working.

3.2 Verifiable Ordering Protocol
The Section formally defines the verifiable ordering protocol and a

detailed description for each step as below.

Definition 3.1 (Verifiable Ordering Protocol). The verifiable de-
vice ordering protocol is a tuple (param, puzgen, P iD , PO ) of four
polynomial-time algorithms such that:

7
For the sake of simplicity this example includes the ordering between the devices and

the corresponding states. However, throughout the paper, our focus is to order time

intervals for devices’ actuation.

8
In case, the user finds a change in his/her schedule, then another remote command

can overwrite the previous commands and the schedule workflow, correspondingly.
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Algorithm 1: Algorithm for order creation.

Inputs: set of l ∈ N devices (Di
), public keys (Di

PK )

Variables: P a puzzle, z a command.

1 Function create (cl ,DN )

2 begin
3 for ∀(i, j) ∃(Di ,D j ) ∈ H do
4 schedule ((Di ,Di+1), (D j ,Dj+1))

5 for ∀(i, i + 1) do
6 z = (son ∨ soff ) ∧ (t̂i ≤ t̂i+1)

7 generate (Pi ) = (n,a, t̂i ,Ez ,Ek )
8 mi = enc(Pi ,Di

PK )

end for
end for

9 return cl = ((m
i ,mi+1), (mj ,mj+1)) end

• Public parameter generator. param(1λ) → (n,a). param(1λ) initial-
izes the prime integer factors n = pq (where p and q are two large

prime numbers) and random value a for the puzzle creation.

• Puzzle generator. puzgen(n,a, t̂ ,Ez ,Ek ) → P. puzgen(n,a, t̂ ,Ez ,Ek )
selects the input values as target time for commands execution

t̂ , encrypted command Ez (z,k), encrypted key Ek (a, t̂ ,n,k) and
outputs a puzzle P for each device.

• Follower Di (Pi , SK) → z(t̂i , t
i
com] completes the puzzle Pi and

executes the command within the half-open interval, i.e., no earlier

than t̂i but earlier than or at t icom.
• Owner O(P,ϕ(n), PK i ) → accept(t icom ≥ t̂i ) accepts the timely

command execution at each device using ϕ(n).
Setup and key distribution. The manufacturing authority initializes

a unique identity for the owner, hub, and, home devices by using

the secure identity distribution function, say Init(1λ) → identity,
where 1

λ
is the security parameter that generates a unique identity

for each entity. The certificate authority verifies that each of these

devices knows the private key paired to the public key proposed

for certification as: the homeowner (OSK ,OPK ), the hub (HSK ,HPK ),

and ith home device (Di
SK ,D

i
PK ), possesses a valid key pair.

Step 1: Order creation: schedule creation at the owner. The
homeowner O first creates a schedule, say Schedule, for device
actuation. The creation of schedule is inherently specific to the

preferences of the owner on a day to day basis and can include all

or a subset of the home devices. The schedule creation does not

require interaction with any device Di
or the hub H . Below we

show a partially ordered timeline/schedule of four devices:

Schedule = ((D1,D2), (D3,D4))

Where only the elements of the same subset are comparable, e.g.,

D1
with D2

, and, D3
with D4

, based on the timeline. The owner

converts this schedule to a verifiable device ordering (see Algo-

rithm 1), before sending it to hub. The function create(cl ,DN ) of

Algorithm 1 converts a schedule for devices into the partially or-

dered sets of commands of length cl , where l ⊆ N . Line 3 considers

a pair
9
of devices in the topology of the hub. Line 4 creates a mu-

tually dependent schedule for the pair of devices with temporal

dependency. Lines 5 and 6 consider all of these mutually dependent

9
We consider only pairs of devices, to simply demonstrate the relative ordering. How-

ever, a different subset may contain as large as the total number of devices.

Algorithm 2: Algorithm for chaining.

Inputs: set of devices (DN
), user-defined schedule

((Di ,Di+1), (D j ,D j+1))

1 Function chain(Di ,D j ,R) begin
2 for ∀(i, j,R) ∈ schedule(Di ,D j ); iRj = i < j do
3 nPn (D

i )

4 for ∀{Di }n! ∧ iRj = true do
5 return

nP ′n {D
i }ni=1

end for
end

pairs, decide the state of command as z = (son ∨ soff ), and then,

generate a unique puzzle Pi for each device in Line 7. Here, the

puzzle message contains a tuple of variables (n,a, t̂i ,Ez ,Ek ), where
n is the product of two large prime numbers p and q, a is a random

number, t̂i is the time-complexity of the puzzle, Ez is the encrypted

command z using key k , and Ek is the encrypted key k . Line 8 en-
crypts each puzzle Pi into a messagemi

for a device Di
using the

public key of the device Di
PK . Line 9 returns an assembled order cl

that contains an encrypted message for each device corresponding

to the mutually dependent devices in the schedule. This ends the

creation of a relative order for the chosen set of devices. Next, the

homeowner sends securely this order, say Order , to the hub, as

follows:

Order = (Oid ,Hid , cl , Sign(H ,OSK ))

i.e., the homeowner sends its identity (Oid ), the identity of the

hub (Hid ), and encrypted order of commands (cl ) along with hash

digest of all three attributes.

Step 2: Token generation by the hub and token delivery to
devices. On receiving the partial order of commands from the

owner, the hub verifies the sender by computing a local hash digest

H ′ over (Oid ,Hid , cl ). Also the hub verifies the signature usingOPK
and compares the received hash digestH with the locally computed

hash digestH ′. IfH = H ′ then the hub accepts this order.

After the verification of order origination, the hub creates a token

that is used for order delivery (in this step) and for data collection

generated by devices (step 4). The token has three fields: command

field cl , data field, and toggle bit string btoggle . Every token field has

sensitive information regarding the device activity. Therefore, we

assume that the token is encrypted using a shared symmetric key

ks among the devices and the controller hub.

T = E((cl | |Data field | |btoggle),ks )

Owner (O) Hub(H )
(Oid ,OSK ,HPK ) (Hid ,HSK ,OPK )
Encode command mDi = (n, a, t̂i, Ezi, Eki)

Generate order cl = ((m1,m2), ...(ml−1 ,ml))||tval

Send order
(Oid ,Hid ,cl,Sign(H,OSK ))−−−−−−−−−−−−−−−−−→

Authorize Sign(H, OSK )

Create token T = (cl||Data field ||btoggle)

Propagate token T
1

Figure 3: Order creation.

The hub, then, forwards the token among all devices in the topol-

ogy even if a device was not included in the schedule, as shown

in Figure 3. On receiving the token, each device decodes the corre-

sponding command in token and forwards the token to the next
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Device(D i) Device(D i+1 )
(D i

id ,D i
SK ) (D i+1

id ,D i+1
SK )

Propagate T
[Di

id ,D
i+1
id ,T ]

−−−−−−−−−→
Verify |tval − tcur + tdiff | < tadv

Decode message Di+1
SK (mDi+1 )

Propagate T
Begin computation (n, a, t̂i, Ezi, Eki)

1

Figure 4: Token circulation.
peer device in the topology. The next peer device is chosen as per

the topology underneath. Recall that the devices are connected in a

pre-defined topology
10

such as in an unidirectional ring, bidirec-

tional ring, star (fault-tolerant), grid, mesh or hybrid setting. Note

that the token rotates constantly in the topology (see Figure 4).

Algorithm 2 explains the linear ordering of devices in function

chain(Di ,D j ,R). The linear ordering condition requires that each

device Di
and D j

must satisfy: the exact same mutual ordering or

relation R = {≤} as in cl . The line 2 selects each pair (i, j) of device
that is paired under relationR = {≤} in the original schedule. Line 3

enumerates all possible permutations of these devices, say
nPn (D

i )

where i ∈ N . Line 4 selects one permuted order
nP ′n of devices

(from the total number of permutations) such that the precedence

relation still holds true, i.e., iRj = true . Finally, in line 5, the selected
topological order

nP ′n is returned from all possible permuted orders

nPn (D
i ) of the devices.

Step 3: Order retrieval and puzzle computation at the devices.
Note that the activation sequence of devices is released ahead of

their actual activation; however, we need to restrict them not to

execute the command before prescribed time. Thus, in this step,

devices perform a pre-defined computation task (as detailed in

Figure 5) to unlock and execute the owner-defined command.

It must be noted that unlocking the command is as necessary as

unlocking the command within the prescribed duration, i.e., know-

ing the particular order of a device in the overall sequence. A device

receives the computation task in the form of a puzzle as soon as

the order is delivered in step 2. Subsequently, the device begins the

computation task if the puzzle validity period has not expired yet.

The time-bound during which a device is restricted to begin, as

well as, end the computation task cannot be compressed unless the

device possesses a distinguisher for the factoring problem. There-

fore, the verification that the secure computation task is crucial.

This can be verified through the Euler’s totient as a trapdoor for

factoring n inside the puzzle. Note that the value of n is public and

the value of ϕ(n) is kept secret. Therefore, computing ϕ(n) from n
is as hard as integer factorization. In addition, without the knowl-

edge of ϕ(n) the computation time for Ek is directly dependent on

t̂ time-consuming square operations.

Algorithm 3 explains the verification of time-bounded commands

in function verify(Di , t̂i ). Line 3, considers all devices that are part
of the current schedule. In order to verify that a specific device has

executed the command within the pre-defined interval, O securely

10
It must be noted that from the practical deployment aspect it is difficult to connect

these smart devices in a ring topology unless the devices belong to the same OEMs,

e.g., Apple HomeKit. Therefore, a star or a grid topology can be used to combat the

single point of failure and device heterogeneity in the current scenario.

The puzzle messages:
n = pq
t̂ = St ′

Ez = enc(z,k)

Ek = k + a
2
t̂
(mod n)

The puzzle computation (P):
(1) Initially, P receives as input a secret key k and encrypt the

original message z denoted as Ez . It must be noticed that each

individual command corresponding to a device Di
is secured

in the form of an encrypted message mi . Furthermore, a

cascaded command as a whole contains multiple messages

of these types.

(2) Subsequently, P receives inputs as a secret key k , random
number a, puzzle difficulty level t̂ , modulus n, and then gen-

erate Ek . The puzzle computation relies on the secrecy of key

k used to encrypt a secret message Ez = (z,k). Also, t̂ = S ∗t ′

denotes the difficulty level of the puzzle for a specific device

which can perform S number of square operations per sec-

ond and t ′ is the time to decrypt the message using a regular

encryption scheme.

(3) The puzzle P includes the tuple (n,a, t̂ ,Ez ,Ek ) for which the

computation task is to be solved. Evidently, the recipient of

this puzzle would have to spend at least t̂ amount of time to

complete the computation task and reveal the key k .

Figure 5: Puzzle computation.

Algorithm 3: Algorithm for delay verification.

Inputs: a puzzle (P) with a set of public variables

(n,a, t̂i , zi ,ki )
1 Function verify(Di , t̂i )

2 begin
3 for ∀(i, j) ∈ schedule((Di ,Di+1), (D j ,D j+1)) do
4 if a2

t̂
mod n ≡ a2

t̂ mod ϕ(n)mod n then
5 if (t icom ≤ t i+1com) ∧ (t

j
com ≤ t

j+1
com) then

6 return True
end if

end for
return False end

pre-computes the Euler’s totient ϕ(n) = (p − 1)(q − 1) such that

p,q is discarded after computing the n and ϕ(n). Line 4, verifies the
time bound for each of these devices, such that

a2
t̂
mod n ≡ a2

t̂ mod ϕ(n)mod n
Line 5 compares the execution order of devices that have hap-

pened as a result of puzzle computation and returns true in line 6 if

it is a total order.

Step 4: Data generation at the devices. Once the devices have
completed the puzzle computation, they generate the data as a

result of the command execution. These home devices are bound

to upload the locally generated data to the hub. In our scheme, the

token contains an anonymous data field to securely transmit the

device generated data to the hub. We use bitwise (b) XOR padding

to overwrite the random data in the token data field as:
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Overwrite data (bo ) = Random data (br ) ⊕ Generated data (bд)
It is cryptographically hard to distinguish the presence of random

data from the device generated data as stored inside the token.

Note that our threat model does not consider the ISP or DNS level

threats, therefore, devices are only assumed to securely generate

and anonymously dispatch the data to the hub and combat any

passive learning attacks within the physical periphery of the home.

Collision: Our token circulation strategy and the token structure

are primarily for smart home scenarios, where we assume that the

single token field can accommodate the peak hour traffic. However,

in case the peak hour traffic exceeds and multiple devices request

for data upload, for example in a multi-tenant building, then to

avoid the collision situation more data fields are required. A simple

approach is to create sub-fields inside the data field such that each

sub-field belongs to a unique device. Thus, each device can fairly

utilize the data upload capacity in any round during the token

circulation.

3.3 Time Analysis
The time spent during the token circulation and puzzle computation

is directly proportional to the number of devices connected in the

network. For example, token begins at time (tHbeg) at the hub and

completes the first round of token circulation at time (tHend ). The

time spent at ith device is (t ifwd − t
i
rcv ) that receive the token at time

(t ircv ) and forward it to next device at time (t ifwd ). Therefore, the

total time spent in one round of token circulation:

tsum = (t
H
end − t

H
beg) − (t

i
fwd − t

i
rcv)

N
i=1

Note that the token circulation time is sequenced and linear w.r.t.

the number of devices. While the puzzle computation time t icom
varies independently among all devices. So the puzzle computation

time at ith device is t icom ≈ t̂ i . In order to optimize the puzzle

computation time and still retain the verifiable guarantees on the

artificial delay, we consider three type of puzzles.

• For comparable devices: Each pair of comparable devices in the

topology requires that t̂ ’s are at least (N − 1)(tNfwd − t
N−1
fwd ) apart.

The devices forward the token before beginning the local compu-

tation task. Any two adjacent devices (DN−1,DN
) that begin the

computation after forwarding the token, must possess:

|t̂N − t̂N−1 | ≥ (N − 1)(tNfwd − t
N−1
fwd )

• For incomparable devices: The set of incomparable devices require

that t̂ ’s are exactly (j − i)(t jfwd − t
i
fwd ) apart. Every time a device

Di
forwards a token to Di+1

it jumps (t i+1fwd − t
i
fwd ) ahead on the

computation timeline with respect to next device due to token

propagation delay. Therefore, in order to provide an identical time

of actuation for all incomparable devices:

|t̂ i − t̂ j | = (j − i)(t
j
fwd − t

i
fwd )

The total number of slots required is (N − k) + 1 where k repre-

sents the number of comparable devices. In particular, each compa-

rable device requires a unique and non-overlapping |t̂ | w.r.t. other
comparable devices; while each incomparable device can be sched-

uled for an identical and overlapping |t̂ |.

Token frequency: The token frequency is a crucial attribute from

the perspective of how early a user can decide the schedule for

all N devices and, how many data upload requests are received

during the peak hours. The frequency of token circulation can be

either fixed or random. Let us assume a fixed slot i between any

two consecutive rounds of the token circulation such that the token

begins a new round at every ith unit of time. The optimal length of

the slot is the same as the maximum t̂ i in any schedule.

Slot length =max{t̂ i }l ∈Ni=1

For example, if (t̂1, t̂2, . . . , t̂ l−1, t̂ l ) is the time-bound for l devices in
any scheduled workflow then the slot length is same as the farthest

possible device on the timeline of a scheduled workflow.

Table 3 represents the cost comparison based on mathemati-

cal operations such as encryption (E), decryption (D), signature
generation and verification (S), exclusive-OR (XOR), hashing (H ),

scalar multiplication (M), and modular exponentiation (Me). The
scheme in [6] imposes a relative overhead such that (pm ) number

of masking packets are required per traffic flow in case the traffic

flow is lesser than a pre-defined threshold value. Therefore, the

total overhead per traffic flow is (Cpm ) where C is the communi-

cation overhead per packet. Similarly, if the traffic flow is above

the threshold value then those excess packets p′m are delayed and

stored inside a queue. Therefore, the total latency per traffic flow

is (Tp′m ) where T is the latency overhead per packet. As shown

here, that our proposed scheme requires the minimum number of

operations. Further, in our approach the computational complexity

at devices is variable and it depends on the required number of

modular exponentiations, e.g., t̂ , as initialized by the owner.

4 SECURITY ANALYSIS
This section provides the security analysis for proposed scheme.

We first model the security experiment, below, like the standard

security model.

ATTACKGAME 1. LetI be the order-preserving protocol between
the challenger and adversary A then the attack game works as:

• Public parameter generation: The challenger generates (n,a) using

param(1λ).
• Puzzle generation: The challenger generates P using puzgen(n,a,
t̂ ,Ek ,Ez ).
• Query phase: An adversary attempts to attack I through token

query given the access to a recently generated token T ′. The ad-

versary sends a value t̂ to the challenger. The challenger generates

the corresponding puzzle P and adds in cl . The follower devices
receive cl , extract the unique puzzle, and execute the command.

The challenger then sends T ′ to the adversary.

• State identification attempt: The adversary attempts to retrieve the

intermediate state of the computation task and attempts to solve

the puzzle earlier than device through tAcom for the same P in T ′,

such that tAcom is lower than the original t̂ .

An adversaryA wins the game, if tAcom < t̂i and the owner outputs

accept. The probabilistic advantage of the adversary, Adv(A), for
winning the game is:

Adv(A) = Pr [tAcom < t̂i ]
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Protocol Cost at device Cost at hub Cost at owner

Proposed scheme (2D + 1XOR + t̂Me) (1S + 1E + 1XOR) (1S + lE + t̂modϕ(n)Me)
Scheme [11] (3H + 7XOR + 1E + 1D) (5H + 8XOR + 1E + 1D) -

Scheme [13] (3M + 2H + 4XOR) (1H + 4XOR) -

Scheme [6] - (Cpm +Tp
′
m ) -

Table 3: Cost comparison between our scheme and existing schemes [6, 11, 13].

We present a sequence of games as Game 0 to Game 2. Each
Game i shows that the advantage of an adversary Pr [tAcom < t̂i ] is
negligibly small. Similarly, each subsequent game Game (i+1) is
produced through previous game such that the changes in secret

parameters remain indistinguishable to the adversary. Therefore,

the advantage of an adversary through changes in secret parameters

(i.e., transitioning from one game to another) remains negligibly

small. If Pr [A(i) → 0] − Pr [A(i + 1) → 0] is non-negligible then

that adversary can be used as a distinguisher or as a solver for

the integer factorization problem in our scheme; where Pr [A(i)]
and Pr [A(i + 1)] represent the probability of adversary winning

the Game i and Game (i+1), respectively. The Game 0 represents
the original attack such that (tAcom = t̂i ) and the artificial delay

before the command execution is kept null. The Game 1 represents

the attack with enhanced t ′ while (tAcom < t ′ ∧ t̂i ). Similarly, the

Game 2 represents the attack with general t ′ while (tAcom = t ′) but

(tAcom < t̂i ).
Game 0: [Record attack] Let us assume that the puzzle P1 contains
t̂ = 0 then the device must perform only one iteration to compute

and decode the enciphered command. However, an adversary can-

not distinguish an early puzzle such as P1 from a delayed puzzle

such as P2 for which t̂ > 0. In the token query phase, an adversary

gathers the token transcripts for a known value of t̂ .

Experiment Expt
A
com=t̂i
A

let cl ((m1,m2), . . . , (ml−1,ml )) ← A(T)

generate mi (t̂ ) at random

(mk (t̂ )) ← A(cl ((m1,m2), . . . , (ml−1,ml )))

if (mk (t̂ ) =mi (t̂ ))
return 1

else return 0

It is computationally hard to distinguish between encrypted

commands and to identify the command that carries known t̂ within
time tAcom = t̂i . An adversary can distinguish the commands with

the advantage

Adv(A)Game 0 = Pr [mi (t̂) ← cl ((m
1,m2), . . . , (ml−1,ml ))] ≤ ϵ

Game 1: [Clone attack with lesser t ′] Let us assume that the

adversary computes the puzzle in time tAcom < t ′ ∧ t̂i where the
unit time capacity t ′ of the adversary is slower. Therefore, the

advantage of the adversary depends on the probability to compute

the t̂ square operations faster than the home device. This requires

that the adversary can solve the prime factors for modulus n.

Adv(A)Game 1 = Pr [(p,q) ← (n)] ≤ ϵ

Game 2: [Clone attack with general t ′] Let us assume that the

adversary can compute as fast as the home device, i.e., t ′. In partic-

ular, the adversary can also perform S number of square operations

per second. The probability Pr [t ′ = tAcom < t̂i ] that an adversary

A can solve a puzzle with the difficulty level t̂ in lesser time than

Properties [11] [13] [6] Our scheme

Upstream direction ✓ ✓ ✓ ✓
Downstream direction ✓ × ✓ ✓
Verifiable delay × × × ✓
Partial ordering × × × ✓
Total ordering × × × ✓
Privacy × × ✓ ✓
Passive attack resistant × × ✓ ✓
Active attack resistant ✓ ✓ × ✓

Table 4: Comparison between our and existing schemes.

the home device is negligibly small. Since the adversary must com-

pute S ′ number of operations for each S operations at home device

where (S ′ − S > ϵ):

Adv(A)Game 2 = Pr [tAcom(S
′t ′) ← t̂i (St

′)] ≤ ϵ

In this sequence of games Game 0 through Game 2 the total ad-
vantage of the adversary Adv(A) depends on the sum of the prob-

ability to win each of these games.

Pr [tAcom = t̂i ] + Pr [t
A
com < t ′ ∧ t̂i ] + Pr [t

′ = tAcom < t̂i ] ≤ ϵ

Overall, the advantage of the adversary is proportional to the avail-

ability of computational resources to solve the puzzle for all devices

in parallel. Similarly, the advantage of the adversary with respect to

a single puzzle and a single device are proportional to the availabil-

ity of computational resources to solve the inherently sequential

operations of that individual puzzle. Therefore, the total advan-

tage of an adversary to clone the entire timeline depends on the

total computational power for both, the parallel and the sequential

operations to decrypt the command ahead of time.

In Table 4 a comparison is shown between our proposed scheme

and the existing work. The comparison is based on the data flow

direction, ordering, verification of ordering, privacy violation, and

attack resistance.

5 EXPERIMENTAL EVALUATION
This section evaluates our proposed system using our prototype

implementation. We describe the mock-up testing IoT application,

experimental setup and overall results from our experiments.

5.1 Experiment Setup
In order to demonstrate the effectiveness and performance of our

proposed architecture, we developed the prototype implementa-

tion and setup the testbed in our lab (as shown in Figure 6). This

proof-of-concept prototype implements the protocols described in

Section 3 and a test application with Python. In this mock-up IoT

application, a device awaits and executes two types of command

given by the homeowner. The “Set” command will change a variable

in the program of the target device while the “Read” command will
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Figure 6: Experimental testbed in our lab
require the device to send the variable together with device status,

e.g., RAM and CPU usages, back to the homeowner. This mock-up

application is created to simulate two-way communication between

the homeowner and devices. Further, note that the application runs

on top of the approach, we proposed in this paper.

Figure 6 depicts the architecture and configuration of the smart

home testbed. An Intel NUC system is programmed to work as

the hub H that forwards information between the homeowner and

smart devices. The hub H equips with two network interfaces: (i)
Ethernet interface that has connections to receive the homeowner-

defined schedule and sends the data of smart devices to the home-

owner, and (ii) Wi-Fi interface that is used to communicate with

smart home devices. Smart home device programs are deployed

on three Raspberry Pis (D1,D2,D3
) (3rd Gen B+ Model) that are

equipped with built-in Wi-Fi interface. Wi-Fi interfaces on the hub

H and the devices (D1,D2,D3
) are configured to work in Wi-Fi

ad-hoc mode [4], which enables direct device-to-device communi-

cation. All Wi-Fi interfaces are configured with pre-defined Wi-Fi

channel, static IP address, and routing information to have a ring

topology. A MacBook Pro with its Wi-Fi interface is deployed in a

different room next to the testbed performs as an adversary, who

listens and dumps all channel activities on the pre-defined channel

into the pcap (packet capture) file for future analysis.

5.2 Results
Based on the testbed described above, we performed different ex-

periments to evaluate the proposed system and the approach. We

first validate our system to check whether it could prevent the ad-

versary from learning device activity from channel activity or not.

Then, we explore the performance of the proposed ring topology

communication with a set of experiments.

Decoupling channel activities from device activities. To eval-
uate the effectiveness that our system protects against the passive

channel listeners, we first defined a sequence of sample user com-

mands, e.g.,D1
: Set,D2

: Set,D2
: Read, andD3

: Read. In a one-minute

experiment, these commands will be issued in 10 seconds intervals.

We performed the experiment by executing the above-mentioned

sequence in our proposed system and also over Wi-Fi infrastructure

network without a ring topology to compare with. The channel ac-

tivities are recorded by the passive channel listener laptop deployed

near our testbed.

Figure 7a shows the passive adversary’s view, i.e., which device

receives a message from the homeowner at which time due to chan-

nel activities in the experiment. It is clear that each time the user

sends a command to devices or devices send data to the user, there

will be a peak in the channel activity. Thus, the adversary infers

0 10 20 30 40 50
Time (s)

0

250

500

750

1000

1250

1500

1750

Th
ro

ug
hp

ut
 (B

yt
es

/s
)

D1
D2
D3

(a) Devices working in common IoT settings

0 10 20 30 40 50 60
Time (s)

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (B

/s
)

D1
D2
D3

(b) Devices working with our proposed system

Figure 7: The adversarial view due to observing channel ac-
tivities
the device activity and user-device interaction from channel activ-

ity. In contrast, Figure 7b shows the effectiveness of our proposed

approach. Note that the channel activity patterns are completely

eliminated, due to the token ring communication.

Communication latency. Instead of sending individual commands

or data to/from devices or hub, the commands and data in our sys-

tem are encapsulated in tokens and transmitted in a ring topology,

which will incur additional communication latency. We performed

experiments to evaluate the impact of increasing latency as the

number of devices in the ring topology increases. Since we only

have a very limited number of real devices, we modified our proto-

col to simulate the scenario that includes a large number of devices

to investigate an impact on communication latency. To achieve

this goal, we add a counter in each token. When the hub generates

the token, it sets the counter equals to the number of devices we

want to simulate in the experiments. This counter is decreased by

one when each device receives and forwards the token to the next

device. When the last device (D3
in our testbed) in the ring topology

receives the token, it checks the value of the current counter. If the

value of the counter is more than zero,D3
forwards the token to the

first device (D1
) to extend the ring topology. If the counter number

is less than or equal to zero, the last device forwards the token back

to the hub to complete a single round of the token. Here, since each

device will receive the same token multiple times, we also need to

prevent the device from solving same puzzles and executing same

commands multiple times. To do so, a unique token ID is added

to each token. Thus, the device solves the puzzle and executes the

command only when the device gets a new token ID.
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Figure 8: Impact of ring topology on the latency
Figure 8 shows that both mean and variation of the latency

increase as more devices added into the ring topology. The mean

of latency rises linearly at the beginning as each additional hop in

the ring topology introduces more latency. After around 39 devices

in the ring topology, the mean latency starts rising faster, since

the length of token also increases with the growth of a number of

devices. Consequently, it may take more time at devices to transmit

the token to the next hop. Of course, the ring latency is not affected,

when there is a few devices, since the number of commands and

toggle bit strings decrease in the token as an decreasing number

of devices. The variation of latency gets larger since it is more

likely that the token transmission at more hops get delayed or re-

transmitted because of unexpected interference or system lag at

the devices.

# Devices 3 27 51 63 75

Avg. Token Len(bytes) 1807 5024 8189 9757 11305

Table 5: Average token length for ring topology size

Communication and computation overheads. It is also impor-

tant to understand the additional overheads incurred due to our

approach. We first measure how the length of token increases as

the number of devices grows. Table 5 shows that the average token

length grows linearly. We also use a USB power meter to measure

the power consumption of the Raspberry Pi in different working

states. Table 6 shows that our system introduces 63% more power

consumption to completely eliminate the channel activity patterns

of all devices.

6 RELATEDWORK
There exist various IoT frameworks such as Apple HomeKit, Smart-
Thing, Azure IoT Suite, IBM Watson IoT platform, Brillo/Weave plat-
form by Google, Calvin IoT platform by Ericsson, ARM mbed IoT
platform, Kura IoT project by Eclipse, interested readers may re-

fer [3, 7] for more details. Overall, the smart home communica-

tion [8, 10] is a network component that executes commands based

on contextual factors. To the best of our knowledge, none of the

work [5, 6] highlight the significance of secure device ordering in a

smart home scenario. We highlight the presence of a pattern among

smart home devices such that a partial ordering on device activity is

observed on daily basis. The authors in [6] have presented a privacy-

preserving traffic shaping scheme to mask the channel activity and

thereby the device or user activity at the ISP level. According to

the scheme, if the shaped traffic rate is lower than the device traf-

fic then the packets are queued, and if the shaped traffic rate is

higher than the device traffic then the dummy packets are added to

State Idle IoT App w/o Ring Sys. IoT App w/ Ring Sys.

Avg. Power 2.25W 3.03W 4.91W

Table 6: Average energy consumption of devices in different
working states
cover the original traffic rate variations. However, these techniques

do not avoid the inferences on device activity pattern due to the

straightforward binding between the channel activity and device

activity. Our scheme decouples the channel activity from the device

activity such that a communication activity over the channel at

any given time cannot be coupled with a specific device activity

or the user activity. The recent work [11, 13] provides a security

framework for home devices and guarantees message anonymity

and unlinkability during the communication sessions from hub to

the device. The scheme is based on authentication and one-time

session key agreement in a 3-way handshake protocol. However, as

mentioned, authentication and encrypted message cannot prevent

the inferences over the communication activity.

7 CONCLUSION
This paper focuses on the security and privacy challenges in smart

homes that facilitate the execution of multiple workflows. In par-

ticular, our solution avoids any inference attacks regarding these

workflows that can reveal the user activity pattern, both in the past

and the future. The primary source of these inference attacks is the

ability to learn communication patterns among the smart home de-

vices. The channel activity and the corresponding device activities

are also sensitive from the user’s privacy perspective. Therefore,

decoupling the channel activity from the device activity is essential

to hide the execution of scheduled workflows.
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