
Partitioned Data Security on Outsourced Sensitive and
Non-sensitive Data

Sharad Mehrotra,1 Shantanu Sharma,1 Jeffrey D. Ullman,2 and Anurag Mishra∗1
1University of California, Irvine, USA. 2Stanford University, USA.
sharad@ics.uci.edu, shantanu.sharma@uci.edu, ullman@gmail.com

ABSTRACT
Despite extensive research on cryptography, secure and efficient
query processing over outsourced data remains an open challenge.
This paper continues along the emerging trend in secure data pro-
cessing that recognizes that the entire dataset may not be sensitive,
and hence, non-sensitivity of data can be exploited to overcome
limitations of existing encryption-based approaches. We propose a
new secure approach, entitled query binning (QB) that allows non-
sensitive parts of the data to be outsourced in clear-text while guar-
anteeing that no information is leaked by the joint processing of
non-sensitive data (in clear-text) and sensitive data (in encrypted
form). QB maps a query to a set of queries over the sensitive
and non-sensitive data in a way that no leakage will occur due
to the joint processing over sensitive and non-sensitive data. In-
terestingly, in addition to improve performance, we show that QB
actually strengthens the security of the underlying cryptographic
technique by preventing size, frequency-count, and workload-skew
attacks.

1. INTRODUCTION
The last two decades have witnessed the development of secure

and privacy-preserving encryption-based [6, 14, 33, 39, 72, 24,
18, 35, 66, 42, 57, 9, 22, 43] or secret-sharing-based [68, 34, 15,
47, 26, 79, 30, 54] techniques to realize the database as a service
model [39]. Despite significant progress, a cryptographic approach
that is both secure (i.e., no leakage of sensitive data to the adver-
sary) and efficient (in terms of time) simultaneously has proved to
be very challenging. Broadly, work on cryptography to support se-
cure outsourcing has taken the following directions:

1. Techniques that support strong security guarantees. The leading
example of which is fully homomorphic encryption [33], which
when mixed with oblivious-RAM (ORAM) [35], offers possibly
amongst the most secure mechanisms. However, such mecha-
nisms incur high overhead in terms of computation time.

2. Techniques that do not depend on the data encryption but pro-
vide strong security, especially, information-theoretic security,
by distributing a value in the form of the secret-shares to non-
colluding clouds. Shamir’s secret-sharing [68], distributed point
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Techniques Time Preventing attacks
Size Workload-

Skew
Access-
patterns

Deterministic encryption 1.43x
Non-deterministic encryp-
tion [63]

2.1x

DSSE [43] 3281x X
SGX [20] 6724x X
Full-retrieval 11135x X X X
Homomorphic Encryption with
ORAM

> 11135x X

Table 1: Comparing different cryptographic techniques in terms
of time (for selection queries over TPC-H data) and attacks. §2
provides details of attacks. x is the time to search a predicate in
cleartext. Xindicates a technique is not vulnerable to a given attack.

functions [34], function secret-sharing [15], and accumulating-
automata [26] are a few examples of such techniques. Such meth-
ods often limit the type of operations one can perform while im-
posing high overhead in terms of communication.

3. Techniques that try to support a wide range of operations in-
cluding index-based retrieval or joins, such as CryptDB [64],
Arx [63], searchable encryption [72], and cryptographic in-
dexes [29, 70, 43]. Such techniques often trade security for per-
formance; for instance, techniques that depend on deterministic
and order-preserving encryptions [6], traversal of the index by
the cloud, or leakage of the searching token do not offer strong
security. Papers [58, 45] show that order-preserving and deter-
ministic encryption techniques when used together, on a dataset
in which the entropy of the values is not high enough can leak the
entire data in clear-text to an attacker through frequency analysis
on the encrypted data.

4. Techniques/systems that exploit secure hardware (Intel Software
Guard Extensions (SGX) [20]), e.g., M2R [25], VC3 [67],
Opaque [87], and EnclaveDB [65]. Such techniques also leak
information during a query execution due to different attacks
on SGX (e.g., cache-line, branch shadowing, and page-fault at-
tacks [81, 37]) and are significantly slow when overcoming these
attacks using ORAM-based computations or emerging architec-
tures such as T-SGX [69] or Sanctum [21].

Table 1 summarizes different techniques based on efficiency and
security. Note that none of the above-mentioned techniques are
completely secure against each attack mentioned in the table, ex-
cept the full retrieval of the database from the public cloud to the
trusted private side.

Given the state of the research, this paper explores a radically
different approach to secure outsourcing that scales cryptographic
mechanisms using database techniques while providing strong se-
curity guarantees. Our work is motivated by recent works on the
hybrid cloud that has exploited the fact that for a large class of
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application contexts, data can be partitioned into sensitive and non-
sensitive components [86, 61, 60]. Such a classification, which
is common in industries for secure computing [1, 2] and done via
appropriately using existing techniques surveyed in [31]; for exam-
ple, (i) inference detection using graph-based semantic data model-
ing [41], (ii) user-defined relationships between sensitive and non-
sensitive data [71], (iii) constraints-based mechanisms, (iv) sensi-
tive patterns hiding using sanitization matrix [48], and (v) com-
mon knowledge-based association rules [49]. However, it is im-
portant to mention here that non-sensitive data can, over time, be-
come sensitive and/or lead to inferences about sensitive data. This
is an inevitable risk of the approaches that exploit sensitive data
classification. Note that all the above-mentioned work based on
sensitive/non-sensitive classification make a similar assumption.
Indeed, another way to view this assumption is that today, cloud
solutions, already outsource databases without encryption and are
risking the loss of not just non-sensitive data but also sensitive data.

Based on data classification into sensitive and non-sensitive data,
secure solutions for hybrid cloud have been developed [46, 86, 85,
61, 60]. These solutions outsource only non-sensitive data and en-
joy both the benefits of the public cloud as well as strong secu-
rity guarantees (without revealing sensitive data to an adversary).
While these techniques provide an effective and secure solution,
they are, however, based on a hybrid cloud, requiring data owners
to maintain potentially unbounded storage locally and also suffer
from significant inter-cloud communication overheads.

Our goal, in this paper, is to explore how sensitive and non-
sensitive classification can be exploited by secure data processing
techniques that store the entire data in the public cloud to bring
new efficiencies to secure data processing. In particular, in the en-
visioned public cloud model, data is stored in a partitioned way –
sensitive data is secured using any existing cryptographic technique
unlike the hybrid cloud solution where the owner stores the sensi-
tive data) and non-sensitive data resides in plaintext. Query pro-
cessing is also split into encrypted and plaintext query processing.
We refer to this as partitioned computing. Unlike the case of the hy-
brid cloud, when implementing partitioned computing at a public
cloud, data processing performed on the sensitive and non-sensitive
parts of the data may reveal exact encrypted tuples and cleartext tu-
ples that satisfy the query to the adversary. Consequently, this leads
to inferences about sensitive data, which will be explained in detail
in §3.

We first define a security model that formally states what it
means to be secure in partitioned computing. We then develop a
query binning (QB) approach that realizes secure partitioned com-
puting for selection queries. We focus on selection queries for sev-
eral reasons. First, selection queries are important in their own
right. For instance, several key-value stores (e.g., Amazon Dy-
namo) and document stores (e.g., MongoDB) focus exclusively
on selection queries (with limited support for joins). Further-
more, most cryptographic research has also focused on selection
queries [14, 33, 39, 72, 24, 18, 35, 66, 42, 57, 34]. Since our
goal is to speed up existing cryptographic techniques (and not to
extend their functionality and make them resilient against attacks,
such as order-revealing, inferences from deterministic encryptions,
leakages from SGX, and different side-channel attacks [44, 58, 59,
17, 45, 53, 37, 13, 38]), we focus on selection queries. Nonetheless,
there are recent work on cryptographic joins [62] and also on joins
using SGX [87]. These approaches, however, are not yet practical,
e.g., from the efficiency perspective, Opaque [87] takes 89 seconds
to execute a selection query on a dataset of size 700MB. The same
query takes about 0.2 milliseconds over cleartext processing. Also,
systems, e.g., Opaque, support limited operations (only primary-

to-foreign key joins) and, furthermore, leaks information due to
cache-line, page table-based, branch shadowing, and output-size
attacks [81, 37]. Many of these attacks can be overcome with ex-
pensive ORAM techniques, and the QB approach alongside such
approaches can be exploited to improve efficiency.

We show two interesting effects of using QB:

1. By avoiding cryptographic processing on non-sensitive data, the
joint cost of communication and computation of QB is signifi-
cantly less than the computation cost of a strongly secure crypto-
graphic technique1 (e.g., homomorphic encryptions, DPF [34], or
secret-sharing-based technique [30, 27]) on the entire encrypted
data; and hence, QB improves the performance of strong crypto-
graphic techniques over a large-scale dataset (§6.2.1, §7).

2. QB provides an enhanced security by preventing several attacks
such as output size, frequency-count, and workload-skew attacks,
even when the underlying cryptographic technique is susceptible
to such attacks (§6.2.2).

Contribution. The primary contributions of this paper are listed
below:

1. A formal definition of partitioned data security in the presence
of a joint processing of sensitive and non-sensitive data (§4).

2. An efficient QB approach (§5) that guarantees partitioned secu-
rity (Theorems 1 and 2), supporting insert operation (§A), cloud-
side-indexes (§6), and that can be built on top of any crypto-
graphic technique.

3. An analytical formal model to compare QB with a pure cryp-
tographic technique under different conditions and different
security levels such as preventing size, frequency-count, and
workload-skew attacks (§6).

4. C-Ind-based QB approach that is both efficient and secure
(§6.2.2).

5. Experiments to validate an integration of QB with existing cryp-
tographic techniques on top of secure databases (§7).2

6. Extensions of QB to deal with workload-skew attacks (§A.1),
non-identical searchable attribute-based column-level sensitivity
(§A.2), other operators (such as join (§A.3), range (§A.4), and
conjunctive queries (§A.6)) and dynamic data (insert, delete, and
update) §A.5.

2. RELATED WORK ON SECURE SELEC-
TION QUERIES

Broadly, existing research on secure selection query execution
techniques can be classified into four categories:
1As will be clear, QB trades off increased communication costs for
executing queries, but can very significantly reduce cryptographic
operations. This tradeoff significantly improves performance, es-
pecially, when using cryptographic mechanisms such as fully ho-
momorphic encryption that takes several seconds simply to com-
pute a single operation [56], secret-sharing-based techniques that
take a few seconds [30], or techniques such as bilinear maps that
take over 1.5 hours to perform joins on a dataset of size less than
10MB [62]. When considering such cryptography, increased com-
munication overheads are fully compensated by the savings. A sim-
ilar observation, albeit in a very different context was also observed
in [61] in the context of MapReduce jobs, where overshuffling to
prevent the adversary to infer sensitive keys in the context of hybrid
cloud was shown to be significantly better compared to private side
operations.
2QB’s performance is evaluated on two well-known systems A and
B; due to legal restrictions, the real names of the systems A and B
are omitted.
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Table 2: Comparison of different algorithms with our algorithms.
Algorithms Storage Computational cost for search Insert

cost
#
rounds

Size
attack

Workload-skew
and frequency
attacks

Data
sensitiv-
ity

Cloud DB
Owner

Cloud DB Owner

Encryption-based indexable solutions
CryptDB∗ [64] D 0 O(1) O(r) O(1) 1 Y Y N

Searchable encryption [24] 2D or
4D

0 D1/3 logD orD1/5 logD O(r) NA 1 Y Y N

Arx∗ [63] D VD O(r · logD) O(r) O(1) 1 Y Y N

Hybrid-Secure∗∗ [60] D αD O(r + log((1− α)D)) O(log(αD)+ r) O(1) 1 N N Y

Our solution∗∗ with indexes D VD O(
√
|NS |r log(αD)+√

|NS |(r+ log(1−α)D)

O(r
√
|S |) O(1) 1 N N Y

Encryption-based non-indexable solutions
Searchable Encryption [72] D 0 D O(1) O(1) 1 Y Y Y

Our solution∗∗ without in-
dexes

D VD O(αD+
√
|NS |(r +

log(1− α)D)
O(r

√
|S |) O(1) 1 N N Y

Notations. ∗: Non-secure systems, due to dependence on deterministic and order-preserving encryption (CryptDB) and at the time of selection and join operations (Arx). ∗∗:
fully secure systems. Y: Yes, a technique/system is vulnerable to a given attack. N: No. D: a database (containing only a single attribute, for simplicity). VD � D: # unique
values in the attribute that is equal to |S| + |NS | in our case, where |S|: unique sensitive values, |NS |: unique non-sensitive values, and |S| < |NS |. r: # occurrences of a
searching value. α < 1: be a ratio between the sizes of sensitive data and the entire dataset.

• Encryption-based techniques examples of which include order-
preserving encryption [6], deterministic encryption [14], homo-
morphic encryption [33], bucketization [39], searchable encryp-
tion [72, 24], private information retrieval (PIR) [18], practical-
PIR [80], oblivious-RAM (ORAM) [35], oblivious transfers [66,
42], oblivious polynomial evaluation [57], oblivious query pro-
cessing [9], searchable symmetric encryption [22], and dis-
tributed searchable symmetric encryption (DSSE) [43].
• Secret-sharing [68] based techniques that include distributed

point function [34], function secret sharing [15], functional se-
cret sharing [47], accumulating-automata [26], Splinter [79], and
others [30, 54].
• Trusted-hardware-based techniques that include [8, 7, 11, 67,

25, 75, 87].
• Sensitivity-based techniques. The papers [46, 86, 85, 61]

have explored secure MapReduce (MR) system implementations
while [60] have explored secure SQL data processing. Both the
secure MR and secure SQL execution solutions work on the prin-
ciple of sensitivity-based data partitioning over the hybrid cloud.
In [87], secure hardware, specifically Intel SGX [20], at the cloud
is used to partition the computation. [19] deals with column-level
sensitivity by encrypting only sensitive columns; however, they
are susceptible to reveal sensitive information based on back-
ground knowledge (an attack like presented in [55]), since the re-
lation is not partitioned into two parts based on sensitivity. How-
ever, QB can also prevent such a type of attack by partitioning a
relation.

Each of the above strategies has resulted in corresponding
systems that support secure data processing. For instance,
CryptDB [64], Monomi [76], TrustedDB [12], CorrectDB [11],
SDB [82], ZeroDB [28], L-EncDB [50], MrCrypt [74], Cryp-
sis [73], Arx [63], and Opaque [87] are some novel encryption-
based systems. Likewise, Cypherbase [7], Microsoft Always En-
crypted, Oracle 12c, Amazon Aurora [3], and MariaDB [4] are
industrial secure encrypted databases. DSSE-based SDB [5] is
a secret-sharing and encryption-based system while Arx [63] and
Opaque [87] work on the data sensitivity principle.

Moreover, these systems/techniques are unable to prevent one or
more of the following attacks:

1. Size attack: An adversary having some background knowledge

can deduce the full/partial outputs by simply observing the out-
put sizes [87]. All the above techniques/systems, except buck-
etization [40] and secret-sharing-based MapReduce [27], are
prone to output-size attacks. Note that computationally expensive
and access-pattern-hiding cryptographic techniques (e.g., PIR,
ORAM, DSSE, oblivious transfer, and secret-sharing) can also
prevent the size and frequency-count attacks only on non-skewed
and non-deterministically encrypted datasets.

2. Frequency attack: An adversary can deduce how many tuples
have an identical value [58]. Order-preserving encryption [6],
deterministic encryption [14], searchable encryption [72], and se-
cure hardware-based techniques [8, 7, 11, 67, 25, 75, 87, 65] are
prone to frequency-count attacks.

3. Access-pattern attack: An adversary can know addresses of en-
crypted tuples that satisfy the query [18]. Private information re-
trieval (PIR) [18], oblivious-RAM (ORAM) [35], oblivious trans-
fers [66, 42], oblivious polynomial evaluation [57], oblivious
query processing [9], and secret-sharing-based techniques [68,
34, 15, 47, 26, 79, 30, 54] are not prone to access-pattern attacks.

4. Workload-skew attack: An adversary, having the knowledge of
frequent selection queries by observing many queries, can esti-
mate which encrypted tuples potentially satisfy the frequent sec-
tion selection queries. Except access-pattern-hiding techniques,
all the techniques are prone to workload-skew attack.

In contrast, to the best of our knowledge, there is no crypto-
graphic technique that prevents all the four attacks on a skewed
dataset. It is important to mention that QB mixed with a weak
cryptographic technique [70, 29, 63] is efficient and secure against
size and workload-skew attacks. This fact will be clear by perfor-
mance analysis in §7 (Figure 8f).

Table 2 presents a comparison of different techniques. Note
that both QB and the most efficient but insecure indexable tech-
nique (Arx [63]) store an identical amount of metadata at the DB
owner. However, QB makes Arx completely secure against the size,
frequency-count, and workload-skew attacks. However, the com-
putational cost of QB is

√
|NS | times higher than Arx, because

of searching
√
|NS | more predicates on encrypted data. Never-

theless, QB performs better than a recent non-indexable technique
(for example, searchable encryption [34]) in terms of the number
of rounds to retrieve all the occurrences of a predicate, time, and
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security levels. Table 2, also, clarifies that QB is better than a re-
cent searchable encryption [24] by allowing dynamic operations,
e.g., insert, and stronger security guarantees.

Notations Meaning
|S| Number of sensitive data values
|NS | Number of non-sensitive data values
Rs Sensitive parts of a relationR
Rns Non-sensitive parts of a relationR
si and nsj ith sensitive and jth non-sensitive values
SB The number of sensitive bins
SBi ith sensitive bin
|SB| = y Sensitive values in a sensitive bin or the size of a sensitive bin
NSB The number of non-sensitive bins
NSBi ith non-sensitive bin
|NSB| = x Non-sensitive values in a non-sensitive bin or the size of a

non-sensitive bin
q(w) A query, q, for a predicate w
q(Wns)(Rns) A query, q, for a set, Wns , of predicates in clear-text over

Rns

q(Ws)(Rs) A query, q, for a set, Ws, of predicates in encrypted form
overRs

q(W )(Rs, Rns)[A] A query, q, for a set,W , of values, searching on the attribute,
A, of the relationsRs andRns , whereW = Ws ∪Wns

E(ti) ith encrypted tuple

Table 3: Notations used in the paper.

3. PARTITIONED COMPUTATION
In this section, we first define more precisely what we mean

by partitioned computing, illustrate how such a computation can
leak information due to the joint processing of sensitive and non-
sensitive data, discuss the corresponding security definition, and
finally discuss system and adversarial models under which we will
develop our solutions. Table 3 enlists notations used in this paper.

The Partitioned Computation Model
We assume the following two entities in our model:

1. A trusted database (DB) owner who divides a relation R having
attributes, say A1, A2, . . . , An, into the following two relations
based on row-level data sensitivity: Rs and Rns containing all
sensitive and non-sensitive tuples, respectively.3 The DB owner
outsources the relation Rns to a public cloud. The tuples of the
relation Rs are encrypted using any existing non-deterministic
encryption [36] mechanism before outsourcing to the same public
cloud.
In our setting, the DB owner has to store metadata such as search-
able values and their frequency counts, which will be used for
appropriate query formulation. The DB owner is assumed to
have sufficient storage for such metadata, and also computational
capabilities to perform encryption and decryption. The size of
metadata is smaller than the size of the original data.

2. The untrusted public cloud that stores the databases, executes
queries, and provides answers.

Let us consider a query q over the relation R, denoted by q(R).
A partitioned computation strategy splits the execution of q into
two independent subqueries: q(Rs): a query to be executed on the
encrypted sensitive relationRs, and q(Rns): a query to be executed
on the non-sensitive relation Rns . The final result is computed (us-
ing a query qmerge ) by appropriately merging the results of the two
3QB can also deal with column-level sensitivity, where sensitive
and non-sensitive relations have different attributes; see §A.2.

subqueries at the DB owner side. In particular, the query q on a
relation R is partitioned, as follows:

q(R) = qmerge

(
q(Rs), q(Rns)

)
Let us illustrate partitioned computations through an example.

EId FirstName LastName SSN Office# Department
t1 E101 Adam Smith 111 1 Defense
t2 E259 John Williams 222 2 Design
t3 E199 Eve Smith 333 2 Design
t4 E259 John Williams 222 6 Defense
t5 E152 Clark Cook 444 1 Defense
t6 E254 David Watts 555 4 Design
t7 E159 Lisa Ross 666 2 Defense
t8 E152 Clark Cook 444 3 Design

Figure 1: A relation: Employee.

Example 1. Consider an Employee relation, see Figure 1. Note
that the notation ti (1 ≤ i ≤ 8) is not an attribute of the relation;
we used this to indicate the ith tuple. In this relation, the attribute
SSN is sensitive, and furthermore, all tuples of employees for the
Department = “Defense” are sensitive. In such a case, the Em-
ployee relation may be stored as the following three relations: (i)
Employee1 with attributes EId and SSN (see Figure 2a); (ii) Em-
ployee2 with attributes EId, FirstName, LastName, Office#, and
Department, where Department = “Defense” (see Figure 2b);
and (iii) Employee3 with attributes EId, FirstName, LastName, Of-
fice#, and Department, where Department <> “Defense” (see
Figure 2c). Since the relations Employee1 and Employee2 (Fig-
ures 2a and 2b) contain only sensitive data, these two relations are
encrypted before outsourcing, while Employee3 (Figure 2c), which
contains only non-sensitive data, is outsourced in clear-text. We
assume that the sensitive data is strongly encrypted such that the
property of ciphertext indistinguishability (i.e., an adversary cannot
distinguish pairs of ciphertexts) is achieved. Thus, the two occur-
rences of E152 have two different ciphertexts.

EId SSN
E101 111
E259 222
E199 333
E152 444
E254 555
E159 666

(a) A sensitive rela-
tion: Employee1.

EId FirstName LastName Office# Department
t1 E101 Adam Smith 1 Defense
t4 E259 John Williams 6 Defense
t5 E152 Clark Cook 1 Defense
t7 E159 Lisa Ross 2 Defense

(b) A sensitive relation: Employee2.

EId FirstName LastName Office# Department
t2 E259 John Williams 2 Design
t3 E199 Eve Smith 2 Design
t6 E254 David Watts 4 Design
t8 E152 Clark Cook 3 Design

(c) A non-sensitive relation: Employee3.

Figure 2: Three relations obtained from Employee relation.

Consider a query q: SELECT FirstName, LastName,
Office#, Department from Employee where
FirstName = John. In the partitioned computation, the
query q is partitioned into two subqueries: qs that executes on
Employee2, and qns that executes on Employee3. qs will
retrieve the tuple t4 while qns will retrieve the tuple t2. qmerge in
this example is simply a union operator. Note that the execution of
the query q will also retrieve the same tuples.

However, such a partitioned computation, if performed naively,
leads to inferences about sensitive data from non-sensitive data.
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Before discussing inference attacks, we first present the adversarial
model.

Adversarial Model
We assume an honest-but-curious adversary that is not trustwor-
thy. The honest-but-curious adversary is considered widely in the
standard database-as-a-service query processing model, keyword
searches, and join processing [16, 83, 77, 84, 78]. An honest-but-
curious adversarial public cloud stores an outsourced dataset with-
out tampering, correctly computes assigned tasks, and returns an-
swers; however, it may exploit side knowledge (e.g., query execu-
tion, background knowledge, and the output size) to gain as much
information as possible about the sensitive data.4 Furthermore, the
honest-but-curious adversary can eavesdrop on the communication
channels between the cloud and the DB owner, and that may help in
gaining knowledge about sensitive data, queries, or results; hence,
a secure channel is assumed. In our setting, the adversary has full
access to the following:

1. All the non-sensitive data. For example, for the Employee rela-
tion in Example 1, an adversary knows the complete Employee3
relation (refer to Figure 2c).

2. Auxiliary/background information of the sensitive data. The aux-
iliary information may contain metadata, schema of the relation,
and the number of tuples in the relation (note that having an ad-
versary with the auxiliary information is also considered in liter-
ature [58, 45]). In Example 1, the adversary knows that there are
two sensitive relations, one of them containing six tuples and the
other one containing four tuples, in the Employee1 and the Em-
ployee2 relations; Figures 2a and 2b. In contrast, the adversary is
not aware of the following information before the query execu-
tion: how many people work in a specific sensitive department,
is a specific person working only in a sensitive department, only
in a non-sensitive department, or both.

3. Adversarial view. When executing a query, an adversary knows
which encrypted sensitive tuples and cleartext non-sensitive tu-
ples are sent in response to a query. We refer this as the ad-
versarial view, denoted by AV : AV = Inc ∪ Opc, where Inc
refers to the query arrives at the cloud and Opc refers to the en-
crypted and non-encrypted tuples, transmitted in response to Inc.
For example, the first row of Table 4 shows an adversarial view
that shows that Opc = t2 tuples from the non-sensitive relation
and encrypted Opc = t4 tuples from the sensitive relation are
returned to answer the query for Inc = E259.

4. Some frequent query values. The adversary observes query pred-
icates on the non-sensitive data, and hence, can deduce the most
frequent query predicates by observing many queries.

Inference Attacks in Partitioned Computations
To see the inference attack on the sensitive data while jointly pro-
cessing sensitive and non-sensitive data, consider following three
queries on the Employee2 and Employee3 relations; refer to Fig-
ures 2b and 2c.
Example 2. (i) retrieve tuples corresponding to employee E259,
(ii) retrieve tuples corresponding to employee E101, and (iii) re-
trieve tuples corresponding to employee E199.5 When answering
4The honest-but-curious adversary cannot launch any attack
against the DB owner. We do not consider cyber-attacks that can
exfiltrate data from the DB owner directly, since defending against
generic cyber-attacks is outside the scope of this paper.
5We used random Eids, which is also common in a real employee
relation. In contrast, in sequential ids, the absence of an id from the
non-sensitive relation directly informs the adversary that the given
id exists in the sensitive relation.

a query, the adversary knows the tuple ids of retrieved encrypted
tuples and the full information of the returned non-sensitive tuples.
We refer to this information gain by the adversary as the adversar-
ial view, shown in Table 4, where E(ti) denotes an encrypted tuple
ti.

Query value Returned tuples/Adversarial view
Employee2 Employee3

E259 E(t4 ) t2
E101 E(t1 ) null
E199 null t3

Table 4: Queries and returned tuples/adversarial view.

Outputs of the above three queries will reveal enough informa-
tion to learn something about sensitive data. In the first query,
the adversary learns that E259 works in both sensitive and non-
sensitive departments, because the answers obtained from the two
relations contribute to the final answer. Moreover, the adversary
may learn which sensitive tuple has an Eid equals to E259. In the
second query, the adversary learns that E101works only in a sensi-
tive department, because the query will not return any answer from
the Employee3 relation. In the third query, the adversary learns that
E199 works only in a non-sensitive department.

The Query Binning (QB) Approach
In order to prevent the inference attack in the partitioned compu-
tation, we need a new security definition. Before we discuss the
formal definition of partitioned data security (§4), we first provide
a possible solution to prevent inference attacks and then intuition
for the security definition.

The query binning (QB) strategy stores a non-sensitive relation,
sayRns , in clear-text while it stores a sensitive relation, sayRs, us-
ing a cryptographically secure approach. QB prevents leakage such
as in Example 2 by appropriately mapping a query for a predicate,
say q(w), to corresponding queries both over the non-sensitive re-
lation, say q(Wns)(Rns), and encrypted relation, say q(Ws)(Rs).
The queries q(Wns)(Rns) and q(Ws)(Rs), each represents a set
of predicates (or selection queries) that are executed over the rela-
tion Rns in plaintext and, respectively, over the sensitive relation
Rs, using the underlying cryptographic method. The set of predi-
cates in q(Wns)(Rns) (likewise in q(WS)(Rs)) correspond to the
non-sensitive (sensitive) bins including the predicate w, denoted
by NSB (SB ). The predicates in q(Ws)(Rs) are encrypted before
transmitting to the cloud.

The bins are selected such that: (i) w ∈ q(Wns)(Rns) ∩
q(Ws)(Rs) to ensure that all the tuples containing the predicate w
are retrieved, and, (ii) joint execution of the queries q(Wns)(Rns)
and q(Ws)(Rs) (hereafter, denoted by q(W )(Rs, Rns), where
W = Ws ∪ Wns ) does not leak the predicate w. Results from
the execution of the queries q(Wns)(Rns) and q(Ws)(Rs) are de-
crypted, possibly filtered, and merged to generate the final answer.
Note that bins are created only once for all the values of a search-
ing attribute before any query is executed. The details of the bin
formation will be discussed in §5.

For answering the above-mentioned three queries, QB creates
two bins on sensitive parts: {E101, E259}, {E152, E159}, and
two sets on non-sensitive parts: {E259, E254}, {E199, E152}.
Table 5 illustrates the generated adversarial view when QB is used
to answer queries as shown in Example 2. In this example, row 1
of Table 5 shows that this instance of QB maps the query for E259
to 〈E259, E254〉 over cleartext and to encrypted version of val-
ues for 〈E259, E101〉 over sensitive data. Note that simply from
the generated adversarial views, the adversary cannot determine the
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query value w (E259 in the example) or find a value that is shared
between the two sets. Thus, while answering a query, the adversary
cannot learn which employee works only in defense, design, or in
both.

The reason is that the desired query value, w, is encrypted with
other encrypted values ofWs, and, furthermore, the query value,w,
cannot be distinguished from many requested non-sensitive values
of Wns , which are in clear-text. Consequently, the adversary is
unable to find an intersection of the two sets, which is the exact
value.6

Query value Returned tuples/Adversarial view
Employee2 Employee3

E259 E(t4 ), E(t1 ) t2, t6
E101 E(t4 ), E(t1 ) t3, t8
E199 E(t4 ), E(t1 ) t3, t8

Table 5: Queries and returned tuples/adversarial view, following
QB.

Thus, in a joint processing of sensitive and non-sensitive data,
the goal of the adversary is to find as much sensitive information
as possible (using the adversarial view or background knowledge),
and the goal of a secure technique is to prevent information leakage
through the joint processing of non-sensitive and sensitive data.

4. PARTITIONED DATA SECURITY
In this section, we formalize the notion of partitioned data se-

curity that establishes when a partitioned computation over sensi-
tive and non-sensitive data does not leak any sensitive information.
Note that an adversary may seek to infer sensitive information us-
ing the adversarial view created during query processing, knowl-
edge of output size, frequency counts, and workload characteris-
tics. We begin by first formalizing the concepts of: associated val-
ues, associated tuples, and relationship between counts of sensitive
values.7

Notations used in the definitions. Let t1, t2, . . . , tm be tuples of
a sensitive relation, say Rs. Thus, the relation Rs stores the en-
crypted tuples E(t1), E(t2), . . . , E(tm). Let s1, s2, . . . , sm′ be
values of an attribute, say A, that appears in one of the sensitive
tuples of Rs. Note that m′ ≤ m, since several tuples may have an
identical value. Furthermore, si ∈ Domain(A), i = 1, 2, . . . ,m′,
where Domain(A) represents the domain of values the attribute
A can take. By #s(si), we refer to the number of sensitive tu-
ples that have si as the value for attribute A. We further de-
fine #s(v) = 0, ∀v ∈ Domain(A), v /∈ s1, s2, . . . , sm′ . Let
t1, t2, . . . , tn be tuples of a non-sensitive relation, say Rns . Let
ns1,ns2, . . . ,nsn′ be values of the attribute A that appears in
one of the non-sensitive tuples of Rns . In analogy with the case
where the relation is sensitive, n′ ≤ n, and nsi ∈ Domain(A),
i = 1, 2, . . . , n′.
Associated values. Let ei = E(ti)[A] be the encrypted represen-
tation of an attribute value of A in a sensitive tuple of the relation
6For hiding an exact selection predicate over an encrypted relation
regardless of data sensitivity, an approach to create a set of selection
predicates including the exact predicate is presented in [53], which,
however, cannot be used to search over sensitive and non-sensitive
relations or multiple relations, due to not dealing with inference
attacks.
7To develop the notation, defining security, and developing QB
(§5), we assume that search is performed on a specific attribute, A,
over a relation, R. The approach trivially generalizes when several
attributes are searchable – we need to maintain metadata required
for QB not just for A, but for all searchable attributes in R.

Rs, and nsj be a value of the attribute A for some tuple of the re-
lation Rns . We say that ei is associated with nsj , (denoted by a

=),
if the plaintext value of ei is identical to the value nsj . In Exam-
ple 1, the value of the attribute Eid in tuple t4 (of Employee2, see
Figure 2b) is associated with the value of the attribute Eid in tuple
t2 (of Employee3, see Figure 2c), since both values correspond to
E259.
Associated tuples. Let ti be a sensitive tuple of the relationRs (i.e.,
Rs stores encrypted representation of ti) and tj be a non-sensitive
tuple of the relation Rns . We state that ti is associated with tj (for
an attribute, sayA) iff the value of the attributeA in ti is associated
with the value of the attribute A in tj (i.e., ti[A]

a
= tj [A]). Note

that this is the same as stating that the two values of attribute A are
equal for both tuples.
Relationship between counts of sensitive values. Let vi and vj be
two distinct values in Domain(A). We denote the relationship
between the counts of sensitive tuples with these A values (i.e.,
#s(vi) (or #s(vj))) by vi

r∼ vj . Note that r∼ can be one of <,=,
or > relationships. For instance, in Example 1, the E101 r∼ E259
corresponds to =, since both values have exactly one sensitive tu-
ple (see Figure 2b), while E101 r∼ E199 is >, since there is one
sensitive tuple with value E101 while there is no sensitive tuple
with E199.

Given the above definitions, we can now formally state the
security requirement that ensures that simultaneous execution of
queries over sensitive (encrypted) and non-sensitive (plaintext) data
does not leak any information. Before that, we wish to mention the
need of a new security definition in our context. The inference at-
tack in the partitioned computing can be considered to be related
to the known-plaintext attack (KPA) wherein the adversary knows
some plaintext data which is hidden in a set of ciphertext. In KPA,
the adversary’s goal is to determine which ciphertext data is related
to a given plaintext, i.e., determining a mapping between ciphertext
and the corresponding plaintext data representing the same value.
In our setup, non-sensitive values are visible to the adversary in
plaintext. However, the attacks are different since, unlike the case
of KPA, in our setup, the ciphertext data might not contain any data
value that is the same as some non-sensitive data visible to the ad-
versary in plaintext.8

Definition: Partitioned Data Security. Let R be a relation con-
taining sensitive and non-sensitive tuples. Let Rs and Rns be the
sensitive and non-sensitive relations, respectively. Let AV be an
adversarial view generated for a query q(w)(Rs, Rns)[A], where
the query, q, for a value w in the attribute A of the Rs and Rns

relations. Let X be the auxiliary information about the sensitive
data, and PrAdv be the probability of the adversary knowing any
information. A query execution mechanism ensures the partitioned
data security if the following two properties hold:

1. PrAdv [ei
a
= nsj |X] = PrAdv [ei

a
= nsj |X,AV ], where ei =

E(ti)[A] is the encrypted representation for the attribute value
A for any tuple ti of the relation Rs and nsj is a value for the
attribute A for any tuple of the relation Rns .

2. PrAdv [vi
r∼ vj |X] = PrAdv [vi

r∼ vj |X,AV ], for all vi, vi ∈
Domain(A).

The first equation (1) captures the fact that an initial probabil-
ity of associating a sensitive tuple with a non-sensitive tuple will be
8The HBC adversary cannot launch the chosen-plaintext attack
(CPA) and the chosen-ciphertext attack (CCA). Since the sensitive
data is non-deterministically encrypted (by our assumption), it is
not prone to the ciphertext only attack (COA).
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identical after executing a query on the relations. Thus, an adver-
sary cannot learn anything from an adversarial view generated after
the query execution. Satisfying this condition also prevents us in
achieving success against KPA. The second equation (2) states that
the probability of an adversary gaining information about the rela-
tive frequency of sensitive values does not increase after the query
execution. In Example 2, an execution of any three queries (for val-
ues E101, E199, or E259) without using QB does not satisfy the
above first equation. For example, the query for E199 retrieves the
only tuple from non-sensitive relation, and that changes the proba-
bility of estimating whether E199 is sensitive or non-sensitive to 0
as compared to an initial probability of the same estimation, which
was 1/4. Hence, an execution of the three queries violates parti-
tioned data security. However, the query execution for E259 and
E101 satisfies the second equation, since the count of returned tu-
ples from Employee2 is equal. Hence, the adversary cannot dis-
tinguish between the count of the values (E259 and E101) in the
domain of Eid of Employee2 relation.

5. QUERY BINNING TECHNIQUE
We develop our strategy initially under the assumption that

queries are only on a single attribute, say A. QB approach takes
as inputs: (i) the set of data values (of the attribute A) that are
sensitive, along with their counts, and (ii) the set of data values
(of the attribute A) that are non-sensitive, along with their counts.
QB returns a partition of attribute values that form the query bins
for both the sensitive as well as for the non-sensitive parts of the
query. We begin in §5.1 by developing the approach for the case
when a sensitive tuple is associated with at most one non-sensitive
tuple (Algorithm 1). We then (§5.2) develop a simple extension
of Algorithm 1 to deal with a situation where the number of non-
sensitive (or sensitive) values is close to a square number.9 Finally,
we provide a general strategy to create bins when a sensitive tuple
is associated with several non-sensitive tuples, in §5.3.

Informally, QB distributes attribute values in a matrix, where
rows are sensitive bins, and columns are non-sensitive bins. For
example, suppose there are 16 values, say 0, 1, . . . , 15, and assume
all the values have sensitive and associated non-sensitive tuples.
Now, the DB owner arranges 16 values in a 4×4 matrix, as follows:

NSB0 NSB1 NSB2 NSB3

SB0 11 2 5 14
SB1 10 3 8 7
SB2 0 15 6 4
SB3 13 1 12 9

In this example, we have four sensitive bins: SB0 {11,2,5,14},
SB1 {10,3,8,7}, SB2 {0,15,6,4}, SB3 {13,1,12,9}, and four non-
sensitive bins: NSB0 {11,10,0,13}, NSB1 {2,3,15,1}, NSB2

{5,8,6,12}, NSB3 {14,7,4,9}. When a query arrives for a value,
say 1, the DB owner searches for the tuples containing values
2,3,15,1 (viz. NSB1) on the non-sensitive data and values in SB3

(viz., 13,1,12,9) on the sensitive data using the cryptographic mech-
anism integrated into QB. We will show that in the proposed ap-
proach, while the adversary learns that the query corresponds to
one of the four values in NSB1, since query values in SB3 are en-
crypted, the adversary does not learn the actual sensitive value or
the actual non-sensitive value that is identical to a clear-text sensi-
tive value.
9The rationale for explaining the strategy first for any number
of non-sensitive values and then explaining it to a case of non-
sensitive values close/equal to a square number will become clear
shortly.

Algorithm 1: Bin-creation algorithm, the base case.
Inputs: |NS |: the number of values in the non-sensitive data,
|S|: the number of values in the sensitive data.

Outputs: SB : sensitive bins; NSB : non-sensitive bins
1 Function create bins(S ,NS) begin
2 Permute all sensitive values
3 x, y ← approx sq factors(|NS |): x ≥ y
4 |NSB | ← x, NSB ← d|NS |/xe, SB ← x, |SB | ← y
5 for i ∈ (1, |S|) do SB [i modulo x][∗]← S[i];
6 for (i, j) ∈ (0,SB − 1), (0, |SB | − 1) do

NSB [j][i]← allocateNS(SB [i ][j ]) ;
7 for i ∈ (0,NSB − 1) do NSB [i][∗]← fill the bin if

empty with the size limit to x ;
8 return SB and NSB

end
9 Function allocateNS(SB [i ][j ]) begin

find a non-sensitive value associated with the jth sensitive
value of the ith sensitive bin

end

5.1 The Base Case
QB consists of two steps. First, query bins are created (in-

formation about which will reside at the DB owner) using which
queries will be rewritten. The second step consists of rewriting the
query based on the binning.

Here, QB is explained for the base case, where a sensitive tuple,
say ts, is associated with at most a single non-sensitive tuple, say
tns , and vice versa (i.e., a

= is a 1:1 relationship). Thus, if the value
has two tuples, then one of them must be sensitive and the other
one must be non-sensitive, but both the tuples cannot be sensitive or
non-sensitive. A value can also have only one tuple, either sensitive
or non-sensitive. Note that if t1, t2, . . . , tl are sensitive tuples, with
values of an attribute A being s1, s2, . . . sn, si 6= sj if i 6= j.

Thus, in the remainder of the section, we will refer to associ-
ation between encrypted value E(ti)[A] and a non-sensitive value
nsj simply as an association between values si and nsj , where si
is the cleartext representation of E(ti)[A] and nsj is a value in the
attribute A of a non-sensitive relation. That is, si

a
= nsj represents

E(ti)[A]
a
= nsj .

The scenario depicted in Example 1 satisfies the base case.
The EId attribute values corresponding to sensitive tuples include
〈E101, E259,E152,E159〉 and corresponding to non-sensitive
tuples are 〈E199, E259, E254, E152〉 for which a

= is 1:1. We
discuss QB under the above assumption, but relax the assumption
in §5.3. Before describing QB, we first define the concept of ap-
proximately square factors of a number.

Approximately square factors. We say two numbers, say x and
y, are approximately square factors of a number, say n > 0, if
x× y = n, and x and y are equal or close to each other such that
the difference between x and y is less than the difference between
any two factors, say x′ and y′, of n such that x′ × y′ = n.

Step 1: Bin-creation. QB, described in Algorithm 1, finds two
approximately square factors of |NS |, say x and y, where x ≥
y. QB creates SB = x sensitive bins, where each sensitive bin
contains at most y values. Thus, we assume |S| ≥ x. QB, further,
creates NSB = d|NS|/xe non-sensitive bins, where each non-
sensitive bin contains at most |NSB | = x values. Note that we are
assuming that |S| ≤ |NS |.10

10QB can also handle the case of |S| > |NS | by applying Algo-
rithm 1 in a reverse way, i.e., factorizing |S|.
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Assignment of sensitive values. We number the sensitive bins from
0 to x− 1 and the values therein from 0 to y− 1. To assign a value
to sensitive bins, QB first permutes the set of sensitive values. Such
a permutation is kept secret from the adversary by the DB owner.11

In order to assign sensitive values to sensitive bins, QB takes the
ith sensitive value and assigns it to the (i modulo x)th sensitive
bin (see Lines 2 and 5 of Algorithm 1).
Assignment of non-sensitive values. We number the non-sensitive
bins from 0 to d|NS |e/x − 1 and values therein from 0 to x − 1.
In order to assign non-sensitive values, QB takes a sensitive bin,
say j, and its ith sensitive value. Assign the non-sensitive value
associated with the ith sensitive value to the jth position of the ith

non-sensitive bin. Here, if each value of a sensitive bin has an asso-
ciated non-sensitive value and |S| = |NS |, then QB has assigned
all the non-sensitive values to their bins (Line 6 of Algorithm 1).
Note that it may be the case that only a few sensitive values have
their associated non-sensitive values and |S| ≤ |NS |. In this case,
we assign the sensitive and their associated non-sensitive values
to bins like we did in the previous case. However, we need to as-
sign the non-sensitive values that are not associated with a sensitive
value, by filling all the non-sensitive bins to size x (Line 7 of Al-
gorithm 1).
Aside. Note that QB assigned at least as many values in a non-
sensitive bin as it assigned to a sensitive bin. QB may form the non-
sensitive and sensitive bins in such a way that the number of values
in sensitive bins is higher than the non-sensitive bins. We chose
sensitive bins to be smaller since the processing time on encrypted
data is expected to be higher than clear-text data processing; hence,
by searching and retrieving fewer sensitive tuples, we decrease the
encrypted data-processing time.

Step 2: Bin-retrieval – answering queries. Algorithm 2 presents
the pseudocode for the bin-retrieval algorithm. The algorithm, first,
checks the existence of a query value in sensitive bins and/or non-
sensitive bins (see Lines 2 and 4 of Algorithm 2). If the value exists
in a sensitive bin and a non-sensitive bin, the DB owner retrieves
the corresponding two bins (see Line 7). Note that here the ad-
versarial view is not enough to leak the query value or to find a
value that is shared between the two bins. The reason is that the de-
sired query value is encrypted with a set of other encrypted values
and, furthermore, the query value is obscured in many requested
non-sensitive values, which are in clear-text. Consequently, the ad-
versary is unable to find an intersection of the two bins, which is
the exact value.

There are the following three other cases to consider:

1. Some sensitive values of a bin are not associated with any non-
sensitive value. For example, in Figure 3, the sensitive values
s4, s7, s8, s9, and s10 are not associated with any non-sensitive
value.

2. A sensitive bin does not hold any value that is associated with
any non-sensitive value. For example, the sensitive bin SB4 in
Figure 3 satisfies this clause.

3. A non-sensitive bin containing no value that is associated with
any sensitive value.

In all the three cases, if the DB owner retrieves only either
a sensitive or non-sensitive bin containing the value, then it will

11We emphasize to first permute sensitive values to prevent the ad-
versary to create bins at her end; e.g., if the adversary is aware of
a fact that employee ids are ordered, then she can also create bins
by knowing the number of resultant tuples to a query. However, for
simplicity, we do not show permuted sensitive values in any figure.

Algorithm 2: Bin-retrieval algorithm.
Inputs: w: the query value.
Outputs: SBa and NSBb: one sensitive bin and one

non-sensitive bin to be retrieved for answering w.
Variables: found ← false

1 Function retrieve bins(q(w)) begin
2 for (i, j) ∈ (0,SB − 1), (0, |SB | − 1) do

if w = SB i[j] then
3 return SB i and NSBj ; found ← true; break

end
end

4 if found 6= true then
5 for (i, j) ∈ (0,NSB − 1), (0, |NSB | − 1) do
6 if w = NSB i[j] then

return NSB i and SBj ; break
end

end
end

7 Retrieve the desired tuples from the cloud by sending
encrypted values of the bin SB i (or SBj) and clear-text
values of the bin NSBj (or NSB i) to the cloud

end

lead to information leakage similar to Example 2. In order to pre-
vent such leakage, Algorithm 2 follows two rules stated below (see
Lines 3 and 6 of Algorithm 2):
Tuple retrieval rule R1. If the query value w is a sensitive value
that is at the jth position of the ith sensitive bin (i.e., w = SB i[j]),
then the DB owner will fetch the ith sensitive and the jth non-
sensitive bins (see Line 3 of Algorithm 2). By Line 2 of Algo-
rithm 2, the DB owner knows that the value w is either sensitive or
non-sensitive.
Tuple retrieval rule R2. If the query value w is a non-sensitive
value that is at the jth position of the ith non-sensitive bin, then the
DB owner will fetch the ith non-sensitive and the jth sensitive bins
(see Line 6 of Algorithm 2).

Note that if query valuew is in both sensitive and non-sensitive
bins, then both the rules are applicable, and they retrieve exactly the
same bins. In addition, if the value w is neither in a sensitive or a
non-sensitive bin, then there is no need to retrieve any bin.
Aside. After knowing the bins, the DB owner sends all the sensi-
tive values in the encrypted form and the non-sensitive values in
clear-text to the cloud. The tuple retrieval based on the encrypted
values reveals only the tuple addresses that satisfy the requested
values. We can also hide the access-patterns by using PIR, ORAM,
or DSSE on each required sensitive value. As mentioned in §1,
access-pattern-hiding techniques are prone to size and workload-
skew attacks. Nonetheless, the use of QB with access-pattern-
hiding techniques makes them secure against these attacks, which
will be discussed in detail in §6.12

Associated bins. We say a sensitive bin is associated with a non-
sensitive bin, if the two bins are retrieved for answering at least one
query.

Our aim when answering queries for all the sensitive and non-
sensitive values using Algorithm 2 is to associate each sensitive bin
with each non-sensitive bin; resulting in the adversary being unable
to predict which (if any) is the value shared between two bins.

12QB is designed as a general mechanism that provides partitioned
data security when coupled with any cryptographic technique. For
special cryptographic techniques that hide access-patterns, it may
be possible to design a different mechanism that may provide par-
titioned data security.
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Sensitive bins Non-sensitive bins

s1, s6

s2, s7

s3, s8

ns12, ns6, ns13, ns14, ns15

ns5, ns1, ns2, ns3, ns11

s4, s9

s5, s10

SB1

SB2

SB3

SB4

SB0

NSB0

NSB1

Figure 3: QB for 10 sensitive and 10 non-sensitive values.
Example 3: QB example Step 1: Bin Creation. We show
the bin-creation algorithm for 10 sensitive values and 10 non-
sensitive values. We assume that only five sensitive values,
say s1, s2, s3, s5, s6, have their associated non-sensitive val-
ues, say ns1,ns2,ns3,ns5,ns6, and the remaining 5 sensi-
tive (say, s4, s7, s8, . . . s10) and 5 non-sensitive values (say,
ns11,ns12, . . . ,ns15) are not associated. For simplicity, we use
different indexes for non-associated values.

QB creates 2 non-sensitive bins and 5 sensitive bins, and
divides 10 sensitive values over the following 5 sensitive bins:
SB0 {s5, s10}, SB1 {s1, s6}, SB2 {s2, s7}, SB3 {s3, s8}, SB4

{s4, s9}; see Figure 3. Now, QB distributes non-sensitive val-
ues associated with the sensitive values over two non-sensitive
bins, resulting in the bin NSB0 {ns5,ns1,ns2,ns3, ∗} and NSB1

{∗,ns6, ∗, ∗, ∗}, where a ∗ shows an empty position in the bin. In
the sequel, QB needs to fill the non-sensitive bins with the remain-
ing 5 non-sensitive values; hence, ns11 is assigned to the last posi-
tion of the bin NSB0, and the bin NSB1 contains the remaining 4
non-sensitive values such as {ns12,ns6,ns13,ns14,ns15}.
Example 3: QB example (continued) Step 2: Bin-retrieval.
Now, we show how to retrieve tuples. If a query is for a sensitive
value, say s2 (refer to Figure 3), then the DB owner fetches two
bins SB2 and NSB0. If a query is for a non-sensitive value, say
ns14, then the DB owner fetches two bins NSB1 and SB3. Thus,
it is impossible for the adversary to find (by observing the adver-
sarial view) which is an exact query value from the non-sensitive
bin and which is the sensitive value associated with one of the non-
sensitive values. This fact is also clear from Table 6, which shows
that the adversarial view is not enough to leak information from the
joint processing of sensitive and non-sensitive data, unlike Exam-
ple 2. In Table 6, E(si) shows the encrypted value of si, and we
are showing the adversarial view only for queries for s2, s7, and
ns13. One may easily create the adversarial view for other queries.
In this example, note that the bin SB2 gets associated with both the
non-sensitive bins NSB0 and NSB1, due to following Algorithm 2.

Exact query value Returned tuples/Adversarial view
Sensitive bin and data Non-sensitive bin and data

s2 or ns2 SB2:E(s2 ),E(s7 ) NSB0:ns1,ns2,ns3,ns5,ns11
s7 SB2:E(s2 ),E(s7 ) NSB1:ns6,ns12,ns13,ns14,ns15
ns13 SB2:E(s2 ),E(s7 ) NSB1:ns6,ns12,ns13,ns14,ns15

Table 6: Queries and returned tuples/adversarial view after retriev-
ing tuples according to Algorithm 2.

Algorithm Correctness
We will prove that QB does not lead to information leakage through
the joint processing of sensitive and non-sensitive data. To prove
correctness, we first define the concept of surviving matches. In-
formally, we show that QB maintains surviving matches among all
sensitive and non-sensitive values, resulting in all sensitive bins be-
ing associated with all non-sensitive bins. Thus, an initial condi-
tion: a sensitive value is assumed to have an identical value to one
of the non-sensitive value is preserved.

Sensitive

bins

Non-sensitive 

bins

SB0

SB1
SB2

SB3
SB4

NSB0

NSB1

(a) Surviving matches after the tuple
retrieval following Algorithm 2.

Sensitive

bins

Non-sensitive 

bins

SB0

SB1
SB2

SB3
SB4

NSB0

NSB1

(b) Surviving matches without fol-
lowing Algorithm 2 for ns12, ns13,
ns14, ns15; also see Table 6.

Figure 4: An example to show security of QB using surviving
matches for 10 sensitive and 10 non-sensitive values.
Surviving matches. We define surviving matches, which are clas-
sified as either surviving matches of values or surviving matches of
bins, as follows:
Before query execution. Observe that before retrieving any tuple,
under the assumption that no one except the DB owner can decrypt
an encrypted sensitive value, say E(si), the adversary cannot learn
which non-sensitive value is associated with the value si. Thus,
the adversary will consider that the value E(si) is associated with
one of the non-sensitive values. Based on this fact, the adversary
can create a complete bipartite graph having |S| nodes on one side
and |NS | nodes on the other side. The edges in the graph are called
surviving matches of the values. For example, before executing any
query, the adversary can create a bipartite graph for 10 sensitive and
10 non-sensitive values.
After query execution. Recall that the query execution on the
datasets creates an adversarial view that guides the adversary to
create a (new) bipartite graph containing SB nodes on one side and
NSB nodes on the other side. The edges in the new graph (obtained
after the query execution) are called surviving matches of the bins.
For example, after executing queries according to Algorithm 2, the
adversary can create a bipartite graph having 5 nodes on one side
and 2 nodes on the other side, see Figure 4a. Note that since bins
contain values, the surviving matches of the bins can lead to the
surviving matches of the values. Hence, from Figure 4a, the ad-
versary can also create a bipartite graph for 10 sensitive and 10
non-sensitive values.

We show that a technique for retrieving tuples that drops some
surviving matches of the bins leading to drop of the surviving
matches of the values is not secure, and hence, results in the in-
formation leakage through non-sensitive data.
Example 4: Dropping surviving matches. In Figure 3, for an-
swering queries for associated values s1, s2, s3, s5, s6, ns1, ns2,
ns3, ns5, or ns6, the DB owner must follow Line 3 or 6 of Algo-
rithm 2 for retrieving the two bins holding corresponding sensitive
and non-sensitive data; otherwise, the DB owner cannot retrieve
two bins that share a common value. Now, retrieved tuples for these
values create an adversarial view as shown in the first six lines ex-
cept the fourth line of Table 6. However, for answering values s4,
s7, s8, s9, s10, ns6, ns12, ns13, ns14, or ns15 (recall that these
values are not associated), if the DB owner does not follow Algo-
rithm 2 and retrieves the bin containing the desired value with any
randomly selected bin of the other side, then it could result in the
following adversarial view; see Table 7. We show the case when
NSB1 is only associated with bin SB1, and bins SB2 is only asso-
ciated with bin NSB0, since Algorithm 2 is not followed.

Having such an adversarial view (Table 7), the adversary can
learn two facts that

1. Encrypted sensitive tuples of the bin SB2 have associated non-
sensitive tuples only in the bin NSB0, not in NSB1 (Figure 4b

2. Non-sensitive tuples of the bin NSB1 have their associated sen-
sitive tuples only in the bin SB1 (see Figure 4b).

9



Exact query value Returned tuples/Adversarial view
Sensitive bin and data Non-sensitive bin and data

s2 or ns2 SB2:E(s2 ),E(s7 ) NSB0:ns1,ns2,ns3,ns5,ns11
s6 or ns6 SB1:E(s1 ),E(s6 ) NSB1:ns6,ns12,ns13,ns14,ns15
s7 SB2:E(s2),E(s7) NSB0:ns1,ns2,ns3,ns5,ns11
ns12 SB1:E(s1),E(s6) NSB1:ns6,ns12,ns13,ns14,ns15
ns13 SB1:E(s1),E(s6) NSB1:ns6,ns12,ns13,ns14,ns15
ns14 SB1:E(s1),E(s6) NSB1:ns6,ns12,ns13,ns14,ns15
ns15 SB1:E(s1),E(s6) NSB1:ns6,ns12,ns13,ns14,ns15

Table 7: Queries and returned tuples/adversarial view without fol-
lowing Algorithm 2.
Based on this adversarial view (Table 7), the bipartite graph drops
some surviving matches of the bins (see Figure 4b). (That fact leads
to the dropping of the surviving matches of the values, specifically,
surviving matches between sensitive values s3, s4, s5, s8, s9, s10
and non-sensitive value ns6, ns12, ns13, ns14, ns15.) Hence, a
random retrieval of bins is not a secure technique to prevent infor-
mation leakage through non-sensitive data accessing.

In contrast, if the DB owner uses Line 3 or 6 of Algorithm 2 for
retrieving values that are not associated, the above-mentioned facts
(i) and (ii) no longer hold. Figure 4a shows the case when each sen-
sitive bin is associated with each non-sensitive bin, if Algorithm 2
is followed. Thus, we can see that all the surviving matches of the
bins and values are preserved after answering queries. Therefore,
for the example of 10 sensitive and 10 non-sensitive values, QB
(Algorithms 1 and 2) is secure, and under the given assumptions
(§4), the adversary cannot find an exact association between a sen-
sitive and a non-sensitive value.
Security and correctness proofs. are presented in §B.
Note: Handling adaptive adversaries. The above presented ap-
proach can handle an honest-but-curious adversary, who cannot ex-
ecute any query, and the case when only the DB owner executes the
queries on the databases. Now, we show how to handle an adaptive
adversary that can execute queries on the database based on the re-
sult of previously selected queries. Note that an adaptive adversary
can use any bin structure to break QB. She may ask some queries
on the non-sensitive data and some queries on the sensitive data.
Her objective is to find a value that is common in sensitive and
non-sensitive datasets.

We explain with the help of an example that shows how an
adaptive adversary breaks QB. Consider four sensitive tuples hav-
ing sensitive value, say s1, s2, . . . , s4, and four non-sensitive tu-
ples having non-sensitive values, say ns1, ns2, . . . , ns4. Suppose
that si is associated with nsi, and all sensitive tuples are encrypted.
A correct bin structure (not considering permuted sensitive val-
ues) will be as follows: SB1: {s1, s3}, SB0: {s2, s4}, NSB1:
{ns1,ns2}, and NSB0: {ns3,ns4}.

Now, first see how can an adaptive adversary break QB, with
the help of two queries: Consider the first query for ns1. The ad-
versary can ask the query for ns1, ns2, s1, and s2. The adversary
will learn that the first and second encrypted tuples are returned.
However, she cannot know which of the tuple has the encrypted
representation of s1.

Another query is for ns3, and she asks for ns1, ns3, s1, and s3.
The adversary will learn that the first and third encrypted tuples are
returned. However, now, she will know that the first encrypted tu-
ple has the encrypted representation is s1, because it was retrieved
in the first query for ns1 as well as in the second query.13 Thus,
by observing access-patterns, the adversary can know which two
tuples are associated.

13Of course if the encrypted relation does not have any tuple having
s1, the adversary can learn that ns1 is not associated with any tuple.
However, this can be prevented trivially by outsourcing fake tuples
having s1.

Algorithm 3: An extension to the bin-creation Algorithm 1 for
the base case, |S| < |NS |.

Inputs: |NS |, |S|. Outputs: SB , NSB
1 Function bin extension(S ,NS) begin
2 Permute all sensitive values
3 x, y ← approx sq factors(|NS |): x ≥ y;

costd ← x+ y
4 z ← closest SquareNum(|NS |), costsn ← 2(z/

√
z)

5 if (costsn + d(|NS | − z)/
√
ze < costd) then

6 Execute Algorithm 1(S, z) and add (NS − z)/
√
z

number of the remaining non-sensitive values in each
non-sensitive bins

end
7 else Execute Algorithm 1(S,NS)

end

To protect this attack, we need to use a cryptographic tech-
nique, e.g., ORAM or secret-sharing that hides access-patterns
at the sensitive data. When using access-patterns-hiding crypto-
graphic techniques, the adversary will learn only the fact that two
tuples are returned in response to any query. But it will not lead to
any inference attacks. It is important to recall that access-patterns-
hiding cryptographic techniques are prone to output size attacks.
Thus, when mixing these techniques with QB makes them secure
against output-size attacks. Note that we cannot use SGX-based so-
lutions at the encrypted data when dealing with an adaptive adver-
sary, because the adversary can observe access-patterns due cache-
lines and branch shadowing [37, 81].

5.2 A Simple Extension of the Base Case
Algorithm 1 creates bins when the number of non-sensitive

data values14 is not a prime number, by finding the two approxi-
mately square factors. However, Algorithm 1 may exhibit a rela-
tively higher cost (i.e., the number of the retrieved tuple) when the
sum of the approximately square factors is high.

For example, if there are 41 sensitive data values and 82 non-
sensitive data values, then Algorithm 1 creates 2 non-sensitive bins
having 41 values in each and 41 sensitive bins having exactly one
value in each (Line 4 of Algorithm 1). Consequently, answering
a query results in retrieval of 42 tuples. (We may also create two
sensitive bins and 41 non-sensitive bins containing exactly two non-
sensitive values in each, resulting in retrieval of 23 tuples.) How-
ever, the cost can be further reduced by a significant amount, which
is explained below.
Example 5: (An example of QB extension — Algorithm 3).
Consider again the example of 41 sensitive and 82 non-sensitive
values. In this case, 81 is the closest square number to 82. Here,
Algorithm 3, described next, creates 9 non-sensitive bins and 9 sen-
sitive bins. By Lines 5 and 6 of Algorithm 1, sensitive values and
associated non-sensitive values are allocated, resulting in that a sen-
sitive bin holds at most 5 values and a non-sensitive bin holds at
most 10 values. Thus, at most 15 tuples are retrieved to answer a
query.
Algorithm 3 description. An extension to the bin-creation Algo-
rithm 1 is provided in Algorithm 3 that handles the case when the
number of non-sensitive values (|S| < |NS |) is close to a square
number.15 Algorithm 3 first finds two approximately square factors
of non-sensitive values and the cost; Line 3. Algorithm 3 also finds
a square number, say z, closest to the non-sensitive values and the

14Recall that we considered the case of |S| ≤ |NS |.
15The case of |S| > |NS | can be handled by applying Algorithm 3
in a reverse way.
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cost; Line 4. Now, Algorithm 3 creates bins using a method that re-
sults in fewer retrieved tuples (Line 5). When Algorithm 3 creates
bins using the square number closest to the non-sensitive values
(Line 6), the remaining non-sensitive values (i.e., |NS | − z2) can
be handled by assigning an equal number of the remaining non-
sensitive values in the bins. Note that the sensitive and associated
non-sensitive values are assigned to bins in an identical manner as
in Algorithm 1 (Lines 5-7).
Aside. In QB, the bin size impacts the overall performance, which
will be validated by the experiments (§7). Hence, a careful selec-
tion of the bin size is mandatory. Note that the retrieval of one
sensitive bin having one value and one non-sensitive bin having 41
values can be beneficial (will be analyzed in §6.2.2), if the cryp-
tographic algorithm on the sensitive data requires more time than
searching and moving 41 non-sensitive tuples from the cloud to the
DB owner side.

5.3 General Case: Multiple Values with Mul-
tiple Tuples

In this section, we will generalize Algorithms 1-3 to consider
a case when different data values have different numbers of associ-
ated tuples. First, we will show that sensitive values with different
numbers of tuples may provide enough information to the adver-
sary leading to the size, frequency-count attacks, and may disclose
some information about the sensitive data. Hence, in the case of
multiple values with multiple tuples, Algorithms 1-3 cannot be di-
rectly implemented. We, thus, develop a strategy to overcome such
a situation.
Size attack scenario in the base QB. Consider an assignment of
10 sensitive and 10 non-sensitive values to bins using Algorithm 1;
see Figure 3. Assume that a sensitive value, say s1, has 1000 sensi-
tive tuples and an associated non-sensitive value, say ns1, has 2000
tuples, while all the other values have only one tuple each. Further,
assume that each data value represents the salary of employees.

In this example, consider a query execution for a value, say
ns1. The DB owner retrieves tuples from two bins: SB1 (contain-
ing encrypted tuples of values s1 and s6) and NSB0 (containing tu-
ples of values ns1,ns2,ns3,ns5,ns11); see Figure 3. Obviously,
the number of retrieved tuples satisfying the values of the bins SB1

and NSB0 will be highest (i.e., 3005) as compared to the number
of tuples retrieved based on any two other bins. Thus, the retrieval
of the two bins SB1 and NSB0 provides enough information to
the adversary to determine which one is the sensitive bin associated
with the bin holding the value ns1. Moreover, after observing many
queries and having background knowledge, the adversary may es-
timate that 1000 people in the sensitive relation earn a salary equal
to the value ns1.

Thus, in the case of different sensitive values having different
numbers of tuples, Algorithm 1 cannot satisfy the second condition
of partitioned data security (i.e., the adversary is able to distinguish
two sensitive values based on the number of retrieved tuples, which
was not possible before the query execution, and concludes that a
sensitive value (s1 in the above example) has more tuples than any
other sensitive value) though preserving all surviving matches, and
holding Theorems 1 and 2 to be true.

In order for the second condition of partitioned data security
to hold (and for the scheme to be resilient to the size and frequency-
count attacks, as illustrated above), sensitive bins need to hold
identical numbers of tuples. A trivial way of doing this is to out-
source some encrypted fake tuples such that the number of tuples
in each sensitive bin will be identical. However, we need to be
careful; otherwise, adding fake tuples in each sensitive bin may in-
crease the cost, if all the heavy-hitter sensitive values are allocated

to a single bin. This fact will be clear in the following example.

s4, s5, s6

s7, s8, s9

SB0

SB1

SB2

s1, s2, s3

(a) The first way.

s9, s4, s2

s8, s6, s1

s7, s5, s3

SB0

SB1

SB2

(b) The second way.

Figure 5: An assignment of 9 sensitive values to 3 bins.

Example 6: (Illustrating ways to assign sensitive values to bins
to minimize the addition of fake tuples). Consider 9 sensitive
values, say s1, s2, . . . , s9, having 10, 20, 30, 40, 50, 60, 70, 80,
and 90 tuples, respectively.16 There are multiple ways of assigning
these values to three bins so that we need to add a minimum number
of fake tuples to each bin. Figure 5 shows two different ways to
assign these values to bins. Figure 5b shows the best way – to
minimize the addition of fake encrypted tuples; hence minimizing
the cost. However, bins in Figure 5a require us to add 180 and 90
fake encrypted tuples to the bins SB0 and SB1, respectively.

Note that there is no need to add any fake tuple if the non-
sensitive values have identical numbers of tuples. In that case, the
adversary cannot deduce which sensitive bin contains sensitive tu-
ples associated with a non-sensitive value. However, it is obvious
that any fake non-sensitive tuple cannot be added in clear-text.

Before describing how to add fake encrypted tuples to bins, we
show that a partitioning of sensitive values over SB bins may lead
to identical numbers of tuples in each bin, where a bin is not re-
quired to hold at most y values, is not a communication-efficient
solution. For example, consider 9 sensitive values, where a value,
say s1, has 100 tuples and all the other values, say s2, s3, . . . , s9,
have 25 tuples each. In this case, we may get bins as shown in Fig-
ure 6. Note that the bins SB1 and SB2 are associated with all the
three non-sensitive bins while the bin SB0 is associated with only
NSB0 (thus, the given bins do not prevent the surviving matches).
In order to associate each sensitive bin with each non-sensitive bin
(and hence, preventing all the surviving matches), we need to ask
fake queries for bins 〈SB0,NSB1〉 and 〈SB0,NSB2〉.

s1

s2, s3, s4, s5

s6, s7, s8, s9

ns1, ns4, ns7

ns2, ns5, ns8

ns3, ns6, ns9

Sensitive bins Non-sensitive bins

SB0

SB1

SB2

NSB0

NSB1

NSB2

Figure 6: An assignment of a heavy-hitter value but dropping sur-
viving matches.

Adding fake encrypted tuples. As an assumption, we know the
number of sensitive bins, say SB , using Algorithm 1 or 3. Here,
our objective is to assign sensitive values to bins such that each bin
holds identical numbers of tuples while minimizing the number of
fake tuples in each bin. To do this, the strategy is given below:

1. Sort all the values in a decreasing order of the number of tuples.
2. Select SB largest values and allocate one in each bin.
3. Select the next value and find a bin that is containing the fewest

number of tuples. If the bin is holding less than y values, then
add the value to the bin; otherwise, select another bin with the

16We assume that there are 9 non-sensitive values, and computed
that we need 3 sensitive and 3 non-sensitive bins.
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fewest number of tuples. Repeat this step, for allocating all the
values to sensitive bins.

4. Add fake tuples’ values to the bins so that each bin contains
identical numbers of tuples.

5. Allocate non-sensitive values as per Algorithm 1 (Lines 6
and 7).

In Appendix C, we will provide a lemma that states how many fake
tuples’ values are required to add when using the above strategy and
a proof outline for partitioned data security for the above strategy.

6. COMPARING QB TO FULLY CRYPTO-
GRAPHIC SOLUTIONS

In §5, we described QB, which eliminates the necessity of en-
crypted data processing over non-sensitive data, while still ensur-
ing security guarantees. In this section, we compare QB to simply
storing the entire data (both sensitive and non-sensitive) in an en-
crypted form and processing queries over encrypted representation.
We compare QB to a fully cryptographic approach from both the
perspective of performance and security.

From the performance perspective, QB results in saving of en-
crypted data processing over non-sensitive data – the more the non-
sensitive data, the more potential savings. Nonetheless, QB incurs
overhead – it converts a single predicate selection query into a set
of predicates selection queries over clear-text non-sensitive data,
and, a set of encrypted predicates selection queries albeit over a
smaller database consisting only of sensitive data. §6.2 discusses
how QB performance can be compared to the pure cryptographic
approaches for non-indexable and indexable cryptographic mecha-
nisms.

From the security perspective, we have already shown that QB
offers no less security than the underlying cryptographic technique
it is implemented on. In particular, we showed that QB offers par-
titioned data security in the sense that the adversary learns nothing
from the joint processing of sensitive and non-sensitive data. What
is more interesting is that QB offers additional security properties
compared to the host cryptographic technique in that it ensures
provable security from the size, frequency-count, and workload-
skew attacks even if the host technique does not guarantee such
properties.

In particular, we incorporate QB with an efficient but a weak
cryptographic mechanism. Coupled with QB, the mechanism of-
fers similar security guarantees as much stronger cryptographic
techniques, albeit at lower overheads.

6.1 Preliminaries
For our model, we will need the following notations: (i) Ccom :

Communication cost of moving one tuple over the network. (ii) Cp
(or Ce): Processing cost of a single selection query on a plaintext
(or encrypted) dataset.

The following three parameters dictate the overhead of QB:

α is the ratio between the sizes of the sensitive data (denoted by
S) and the entire dataset (denoted by D = S + NS , where
NS is non-sensitive data).

β is the ratio between the selection query execution time on en-
crypted data using a cryptographic technique and on clear-
text data for a fixed dataset on a specific database system (in
both cases). Note that β = Ce/Cp.

γ: is the ratio between the processing time of a single selection
query on encrypted data and the time to transmit the single
tuple over the network from the cloud to the DB owner. Note
that γ = Ce/Ccom .

Clearly, the parameter β captures the overhead of a cryptographic
technique and is dominated by the type of underlying encryption
and the cryptographic technique used for searching a predicate.
For example, the β value will be higher for search operation us-
ing a fully homomorphic encryption technique (because of a higher
value of the cryptographic matching operation time) as compared
to deterministic encrypted search. Obviously, for the most efficient
cryptographic technique, β should be 1.

Based on the above parameters, we can compute the cost of
cryptographic and non-cryptographic selection operations as fol-
lows:

Costplain(x,D) : is the sum the processing cost of x selection
queries on plaintext data and the communication cost of
moving all the tuples having x predicates from the cloud to
the DB owner, i.e., x(log(D)Pp + ρDCcom).

Costcrypt(x,D) : is the sum the processing cost of x selection
queries on encrypted data and the communication cost of
moving all the tuples having x predicates from the cloud to
the DB owner, i.e., x(PeD + ρDCcom), where ρ is the se-
lectivity of the query.

Given the above, we can compare QB with cryptographic tech-
niques and define a parameter η to be the ratio between the cost of
performing a search using QB and the cost of performing the search
when the entire data (viz. sensitive and non-sensitive data) is fully
encrypted using the cryptographic mechanism. In particular,

η =
Costcrypt(|SB |, S)
Costcrypt(1, D)

+
Costplain(|NSB |,NS)

Costcrypt(1, D)

Note that if the value of η is less than 1, then QB performs
better than a fully cryptographic approach, else it performs worse.

6.2 Comparing QB at Different Levels of Se-
curity

6.2.1 Enhancing performance of a cryptographic
technique

Several cryptographic search techniques [72, 34, 30, 26, 27]
perform a linear scan over encrypted tuples to determine the set
of tuple-ids that satisfy the query. Note that cost of evaluating x
queries over encrypted data using techniques [72, 34, 30, 26, 27] is
amortized and can be performed using a single scan of data. Hence,
x is not the factor in the cost corresponding to encrypted data pro-
cessing. Thus, Costcrypt(x,D) = PeD + ρxDCcom , and so η
equation becomes after filling out the values from above:

η =
CeS + |SB |ρDCcom

CeD + ρDCcom
+
|NSB | log(D)Cp + |NSB |ρDCcom

CeD + ρDCcom

Separating out the communication and processing costs, η be-
comes:

S

D

Ce
Ce + ρCcom

+
|NSB | log(D)Cp
CeD + ρDCcom

+
ρDCcom(|NSB |+ |SB |)

CeD + ρDCcom

Substituting for various terms and cancelling common terms pro-
vides:

η = α
1

(1 + ρ
γ
)
+

log(D)

D

|NSB |
β(1 + ρ

γ
)
+
ρ

γ

|NSB |+ |SB |
(1 + ρ

γ
)

Note that ρ/γ is very small, thus the term (1 + ρ/γ) can be substi-
tuted by 1. Given the above, the equation becomes:

η = α+ log(D)|NSB/Dβ + ρ(|NSB |+ |SB |)/γ
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Note that the term log(D)|NSB |/Dβ is very small since |NSB |
is the number of distinct values (approx. equal to

√
|NS |) in a

non-sensitive bin, while D, which is the size of a database, is a
large number, and β value is also very large. Thus, the equation
becomes:

η = α+ ρ(|SB |+ |NSB |)/γ

QB is better than a cryptographic approach when η < 1, i.e.,
α + ρ(|SB | + |NSB |)/γ < 1. Thus, α < 1 − ρ(|SB|+|NSB|)

γ
.

Note that the values of |SB | and |NSB | are approximately
√
|NS |,

we can simplify the above equation to: α < 1 − 2ρ
√
|NS |/γ.

If we estimate ρ to be roughly 1/|NS | (i.e., we assume uniform
distribution), the above equation becomes: α < 1− 2/γ

√
|NS |.

The equation above demonstrates that QB trades increased
communication costs to reduce the amount of data that needs to be
searched in encrypted form. Note that the reduction in encryption
cost is proportional to α times the size of the database, while the
increase in communication costs is proportional to

√
|D|, where

|D| is the number of distinct attribute values. This, coupled with
the fact that γ is much higher than 1 for encryption mechanisms
that offer strong security guarantees, ensures that QB almost al-
ways outperforms the full encryption approaches. For instance, the
cryptographic cost for search using secret-sharing is ≈ 10ms [30],
while the cost of transmitting a single row (≈ 200 bytes for TPCH
Customer table) is ≈ 4 µs making the value of γ ≈ 25000. Thus,
QB, based on the model, should outperform the fully encrypted so-
lution for almost any value of α, under ideal situations where our
assumption of uniformity holds. Figure 7 plots a graph of η as a
function of γ, for varying sensitivity and ρ = 10%.

100 10000 20000 30000 40000 50000
0.0

0.5

1.0

1.5
= 1
= 0.3
= 0.6
= 0.9

Figure 7: Efficiency graph using equation η = α + ρ(|SB | +
|NSB |)/γ.

6.2.2 Enhancing Security Properties of a Crypto-
graphic Technique

Several secure and non-secure indexable cryptographic tech-
niques for avoiding the overhead of the linear scan operation have
been proposed in the literature [70, 29, 63, 22, 43]. For instance,
secure indexable techniques such as [43] require us to first create
an index (particularly, a B-tree) on a key attribute at the trusted side
before outsourcing the index to the cloud. Access-patterns during
retrieval are hidden using ORAM execution over the index. We
collectively refer to such techniques as U-Ind.

While U-Ind can have significant overhead, more efficient ap-
proaches that, however, compromise security have been described
in [70, 29, 63]. For instance, in Arx [63], the DB owner stores
each domain value v and the frequency of v in the database. The
technique encrypts the ith occurrence of v as a concatenated string
〈v, i〉 thereby ensuring that no two occurrences of v result in an
identical ciphertext. Such a ciphertext representation can then be
indexed on the cloud-side. During retrieval, the user keeps track of

the histogram of occurrences for each value and generates appro-
priate ciphertexts that can be used to query the index on the cloud.
It is not difficult to see that Arx, by itself, is susceptible to the
size, frequency-count, workload-skew, and access-pattern attacks.
However, the query processing using Arx as efficient as the plain-
text version due to the use of an index. Let us refer to the above
technique as C-Ind.

It is not difficult to see that C-Ind techniques, by itself is sus-
ceptible to the size, frequency-count, and workload-skew attacks.
However, it is significantly more efficient (almost as efficient as
the plaintext version). For instance, for the above-mentioned C-Ind
technique (Arx [63]), β = 1.4 on the system A and β = 2.5 on
the system B, while β values on the systems A and B for a U-Ind
approach are very high, 1200 and 2200, respectively.

Let us next explore under what conditions QB improves the
performance of an index-based cryptographic technique. As before
η must be below 1 for QB to provide any benefit over using a cryp-
tographic approach. Unlike the case of linear scan approaches, the
effect of combining QB with indexable approaches may not be as
significant, since the time of |SB | searches cannot be absorbed in a
single index scan unless all |SB | values lie in a single node of the
index. In the worst case, we traverse the index at most |SB | times,
unlike Arx [63], which traverses the index only once for a single
selection query.

Thus, QB by itself is not expected to improve the performance
of an index-based approach. Such a comparison, however, is not
fully fair to QB, QB provides additional security from the size,
frequency-count, and workload-skew attacks even if the underly-
ing cryptographic technique does not. This can be of a great value
for index-based approaches, since index-based approaches (given
they only traverse a subset of the database using the index) are vul-
nerable to such attacks.

However, QB does not protect access-patterns being revealed
which could be prevented using ORAM. Determining whether cou-
pling ORAM with Arx mixed with QB or using a more secure
cryptographic solutions, e.g., secret-sharing, which uses a linear
scan [27] to prevent access-patterns, with QB, more efficient (while
QB with both the solutions strengthen the underlying cryptographic
technique) is an open question.

7. EXPERIMENTS
In this section, we: (i) study QB under different parameter set-

tings (e.g., DB size and bin size) and overhead of insertion, (ii)
validate the analytical model developed in §6 to identify when QB
performs better than a purely cryptographic approach, (iii) com-
pare different cryptographic approaches, with and without QB, in
terms of security and performance with the goal to identify relative
overheads needed to achieve higher levels of security.
Experimental setup. We used virtual machines (VM), each with
2.6 GHz, 4 core processor, 16 GB RAM, and 1TB physical disk
in our in-house cloud. Various cryptographic approaches used in
experiments (with and without QB) include: (i) non-deterministic
encryption supported by two popular commercial systems A and
B17 combined with search implemented by retrieving the column
in the query, decrypting to determine the relevant rows which
are then retrieved subsequently. We name these techniques No-
Ind(A) and No-Ind(B), respectively. For comparing against non-
indexable cryptographic searches at the cloud-side, we used SGX-
based Opaque [87] and the multi-party computations (MPC) based
Jana [10] for evaluating QB’s effectiveness. We also used two
indexable approaches: (i) U-Ind: a commercial implementation

17We refer to the systems as A and B to hide their true identity.
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Figure 8: Experiments.

that uses DSSE preventing access-pattern attacks, and (ii) C-Ind:
a cloud-side index [63]. For each of the 4 approaches, we also de-
veloped a QB approach on top.
Dataset and sensitivity. We used TPC-H benchmark to generate
the dataset for our experiments. The sensitivity factor (α) was var-
ied from 0.1 to 0.9 for experiments. For QB based approaches,
the sensitive part was stored in the underlying cryptographic sys-
tem while the non-sensitive data stored in plain text over which
a non-clustered B+ tree index was created. Furthermore, sen-
sitive and non-sensitive bins were stored at the DB owner side
with other metadata to formulate appropriate partitioned queries.
Such metadata storage is propositional to the domain size of the
searchable attributes and it is independent of the database size. For
TPC-H LINEITEM table, metadata for attributes L PARTKEY and
L SUPPKEY were 13.6MB and 0.65MB, respectively. The meta-
data storage can further be reduced using compression. The total
execution time was computed by retrieving the tuples associated
with the predicate in both the bins. Each experimental setup was
repeated 50 times to minimize the effect of outliers.
Exp 1: Robustness of QB. To explore the effectiveness of QB
under different DB sizes, we tested QB for 3 DB sizes: 150K,
1.5M, and 4.5M tuples using No-Ind(A) and No-Ind(B) as under-
lying cryptographic mechanisms. Figure 8a plots η values for the
three sizes for No-Ind(A) while varying α. The figure shows that
η < 1, irrespective of the DB sizes, confirming that QB scales to
larger DB sizes (results over No-Ind(B) are similar). Table 8 shows
the time taken when using QB with Opaque and Jana at different
levels of sensitivity. Without using QB for answering a simple se-
lection query, Opaque [87] took 89 seconds on a dataset of size
700MB (6M tuples) and Jana [10] took 1051 seconds on a dataset
of size 116MB (1M tuples). Note that the time to execute the same
query on cleartext data of size 700MB took only 0.0002 seconds.
QB improves not only the performance of Opaque and Jana, but
also makes them to work securely on partitioned data and resilient
to output-size attack. The performance of QB will be even higher
when one uses more secure cryptographic techniques that are re-

silient to output-size attacks, since these techniques will consume
significant time for answering a query.

Technique 1% 5% 20% 40% 60%
SGX-based Opaque [87] 11 15 26 42 59
MPC-based Jana [10] 22 80 270 505 749

Table 8: Time (in seconds) when mixing QB with Opaque and Jana
at different levels of sensitivity.

Exp 2: Impact of bin-size and insert operation. Figure 8b plots
an average time for a selection query using QB with a different bin
size, which is in turn governed by the values of |SB | and |NSB |,
respectively. We plot the effect of ||SB |− |NSB || on retrieval time
and find that the minimum time is achieved when |SB | = |NSB |.
Thus, the optimal choice is |SB | = |SB | =

√
|NS | (Line 5, Al-

gorithm 3). Finally, Figure 8c plots an average cost of search after
a number of insertions. In the experiment, insertions are processed
(as per the method, given in §A) in batches of 10K and after each
batch, selection queries are executed to determine overhead due to
insertion. Finally, after 7 batches of insertion, Algorithm 3 is re-
executed to recreate bins. The figure confirms that the query cost
increases but only marginally in the presence of insertion and (as
shown by the last plotted point) reduces by re-binning.
Exp 3. Validation of analytical model. To validate the model
for indexable and non-indexable approaches (§6), we implemented
fully cryptographic approaches, e.g., C-Ind [63], No-Ind(A), and
No-Ind(B), and compared with the corresponding QB by varying
α. Figure 8d shows the effect of α on η for non-indexable systems.
The results are as per the analytical model, where QB should be
effective even at 0.8 sensitivity. Figure 8e presents the results of QB
on C-Ind and U-Ind, which are indexable for which, as expected,
QB does not improve performance.
Exp 4. Number of fake tuples. Table 9 summarizes the number
of fake tuples added for TPC-H LineItem data at different levels of
sensitivity. The reason of decreasing fake tuples when increasing
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LineItem entire size 1% 5% 20% 40% 60%
6M 34244 34048 29568 24024 22736

Table 9: Number of fake tuple inserted due to QB.
sensitivity is that more real tuples take place of the fake tuples. In
general, the addition of fake tuples will adversely affect QB, espe-
cially, if data is skewed. However, as shown in Table 8, QB remains
significantly better compared to fully cryptographic approaches at
all levels of sensitivity despite fake tuples being added.
Exp 5: Overheads for security. Figure 8f shows average ex-
ecution times for different schemes with/without QB at a given
sensitivity level α = 0.5. C-Ind+QB, No-Ind(A)+QB, No-
Ind(B)+QB offer the same level of security (viz., security against
size, workload-skew, and frequency attacks), which is higher se-
curity compared with C-Ind, No-Ind(A) and No-Ind(B). The figure
clearly shows C-Ind+QB as the most compelling scheme from both
security and performance perspective; which requires significantly
less time as compared to a direct implementation of U-Ind without
using QB. C-Ind+QB, however, cannot be compared with U-Ind
in terms of security, which prevents access-pattern attacks but not
preventing workload-skew, frequency, or size attacks. U-Ind+QB
is the most secure technique that prevents workload, frequency,
and size attacks while also preventing access-pattern attacks. It,
however, incurs a significant overhead compared to C-Ind+QB. A
more efficient approach compared to U-Ind+QB that offers security
against all four attacks is an interesting direction of future work.

8. CONCLUSION
This paper proposes query binning (QB) technique that serves

as a meta approach on top of existing cryptographic techniques
to support secure selection queries when a relation is partitioned
into cryptographically secure sensitive and clear-text non-sensitive
sub-relations. Further, we develop (i) a new notion of parti-
tioned data security that restricts exposing sensitive information
due to the joint processing of the sensitive and non-sensitive re-
lations, and (ii) an analytical model to investigate the efficiency
of QB against pure cryptographic techniques. Besides improv-
ing efficiency, while supporting partitioned security, interestingly,
QB enhances the security of the underlying cryptographic tech-
nique by preventing size, frequency-count, and workload-skew at-
tacks. As a result, combining QB with efficient but non-secure
cloud-side indexable cryptographic approaches can result in an ef-
ficient and significantly more secure search. Furthermore, exist-
ing indexable/non-indexable cryptographic techniques that prevent
access-patterns can also benefit from the added security that QB
offers. Further, we extend QB for join and range queries over sen-
sitive and non-sensitive data.
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[39] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over
encrypted data in the database-service-provider model. In SIGMOD, pages
216–227, 2002.

[40] H. Hacigümüs, S. Mehrotra, and B. R. Iyer. Providing database as a service. In
ICDE, pages 29–38, 2002.

[41] T. H. Hinke. Inference aggregation detection in database management systems.
In IEEE SP, pages 96–106, 1988.

[42] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with
applications. In ISTCS, pages 174–184, 1997.

15

http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
https://www.getfilecloud.com/blog/2015/07/5-tips-on-optimizing-your-hybrid-cloud/
https://www.getfilecloud.com/blog/2015/07/5-tips-on-optimizing-your-hybrid-cloud/
https://aws.amazon.com/rds/aurora/
https://mariadb.com/


[43] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases
with distributed searchable symmetric encryption. In RSA, pages 90–107, 2016.

[44] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In NDSS, 2012.

[45] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure
outsourced databases. In CCS, pages 1329–1340, 2016.

[46] S. Y. Ko, K. Jeon, and R. Morales. The HybrEx model for confidentiality and
privacy in cloud computing. In HotCloud, 2011.

[47] I. Komargodski and M. Zhandry. Cutting-edge cryptography through the lens of
secret sharing. In TCC, pages 449–479, 2016.

[48] G. Lee, C.-Y. Chang, and A. L. Chen. Hiding sensitive patterns in association
rules mining. In COMPSAC, pages 424–429, 2004.

[49] C. Li, H. Shirani-Mehr, and X. Yang. Protecting individual information against
inference attacks in data publishing. In K. Ramamohanarao, P. R. Krishna,
M. K. Mohania, and E. Nantajeewarawat, editors, DASFAA, pages 422–433.

[50] J. Li, Z. Liu, X. Chen, F. Xhafa, X. Tan, and D. S. Wong. L-EncDB: A
lightweight framework for privacy-preserving data queries in cloud computing.
Knowl.-Based Syst., 79:18–26, 2015.

[51] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar. Fast range query
processing with strong privacy protection for cloud computing. PVLDB,
7(14):1953–1964, 2014.

[52] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar. Fast and scalable range
query processing with strong privacy protection for cloud computing.
IEEE/ACM Trans. Netw., 24(4):2305–2318, 2016.

[53] C. Liu, L. Zhu, M. Wang, and Y. Tan. Search pattern leakage in searchable
encryption: Attacks and new construction. Inf. Sci., 265:176–188, 2014.

[54] W. Lueks and I. Goldberg. Sublinear scaling for multi-client private information
retrieval. In FC, pages 168–186, 2015.

[55] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam.
L-diversity: Privacy beyond k-anonymity. TKDD, 1(1):3, 2007.

[56] P. Martins, L. Sousa, and A. Mariano. A survey on fully homomorphic
encryption: An engineering perspective. ACM Comput. Surv.,
50(6):83:1–83:33, 2017.

[57] M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,
35(5):1254–1281, 2006.

[58] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on
property-preserving encrypted databases. In SIGSAC, pages 644–655, 2015.

[59] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Kohlweiss, and
D. Sharma. Observing and preventing leakage in MapReduce. In CCS, pages
1570–1581, 2015.

[60] K. Y. Oktay, M. Kantarcioglu, and S. Mehrotra. Secure and efficient query
processing over hybrid clouds. In ICDE, pages 733–744, 2017.

[61] K. Y. Oktay, S. Mehrotra, V. Khadilkar, and M. Kantarcioglu. SEMROD: secure
and efficient MapReduce over hybrid clouds. In SIGMOD, pages 153–166,
2015.

[62] H. Pang and X. Ding. Privacy-preserving ad-hoc equi-join on outsourced data.
ACM Trans. Database Syst., 39(3):23:1–23:40, 2014.

[63] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly encrypted database
system. IACR Cryptology ePrint Archive, 2016:591, 2016.

[64] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
processing queries on an encrypted database. Commun. ACM, 55(9):103–111,
2012.

[65] C. Priebe, K. Vaswani, and M. Costa. Enclavedb: A secure database using
SGX. In SP, pages 264–278, 2018.

[66] M. O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187, 2005.

[67] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. VC3: trustworthy data analytics in the cloud using SGX.
In SP, pages 38–54, 2015.

[68] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[69] M. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: eradicating

controlled-channel attacks against enclave programs. In NDSS, 2017.
[70] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes. Designing secure indexes

for encrypted databases. In DBSec, pages 54–68, 2005.
[71] G. W. Smith. Modeling security-relevant data semantics. IEEE Transactions on

Software Engineering, 17(11):1195–1203, 1991.
[72] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on

encrypted data. In 2000 IEEE Symposium on Security and Privacy, pages
44–55, 2000.

[73] J. J. Stephen, S. Savvides, R. Seidel, and P. Eugster. Practical confidentiality
preserving big data analysis. In HotCloud, 2014.

[74] S. D. Tetali, M. Lesani, R. Majumdar, and T. D. Millstein. MrCrypt: static
analysis for secure cloud computations. In OOPSLA, pages 271–286, 2013.

[75] Q.-C. To, B. Nguyen, and P. Pucheral. Private and scalable execution of SQL
aggregates on a secure decentralized architecture. ACM Trans. Database Syst.,
41(3):16:1–16:43, Aug. 2016.

[76] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing analytical
queries over encrypted data. Proc. VLDB Endow., 6(5).

[77] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou. Secure ranked keyword search
over encrypted cloud data. In ICDCS.

[78] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou. Privacy-preserving
public auditing for secure cloud storage. IEEE Trans. Computers,
62(2):362–375, 2013.

[79] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia. Splinter:
Practical private queries on public data. In NSDI, pages 299–313, 2017.

[80] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private information retrieval using
trusted hardware. IACR Cryptology ePrint Archive, 2006:208, 2006.

[81] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H. Tang, and
C. A. Gunter. Leaky cauldron on the dark land: Understanding memory
side-channel hazards in SGX. In CCS, pages 2421–2434, 2017.

[82] W. K. Wong, B. Kao, D. W. Cheung, R. Li, and S. Yiu. Secure query processing
with data interoperability in a cloud database environment. In SIGMOD, pages
1395–1406, 2014.

[83] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and
fine-grained data access control in cloud computing. In INFOCOM, pages
534–542, 2010.

[84] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data sharing with attribute
revocation. In ASIACCS, pages 261–270, 2010.

[85] C. Zhang, E. Chang, and R. H. C. Yap. Tagged-MapReduce: A general
framework for secure computing with mixed-sensitivity data on hybrid clouds.
In CCGrid, pages 31–40, 2014.

[86] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic: privacy-aware data
intensive computing on hybrid clouds. In CCS, pages 515–526, 2011.

[87] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica.
Opaque: An oblivious and encrypted distributed analytics platform. In NSDI,
pages 283–298, 2017.

APPENDIX
A. DESIDERATA

A.1 Handling Workload-skew Attack
In the workload-skew attack, as mentioned in §2, the adver-

sary may estimate which encrypted tuples potentially satisfy the
frequent selection predicates, while knowing the frequent selection
queires by observing many queries in the absence of an access-
pattern-hiding scheme. Note that the workload-skew attack is en-
tirely different from the workload attack, where an active adver-
sary having the knowledge of partial workload tries the workload
to break a secure scheme, and, in this paper, we are not dealing
with workload attack, since we assumed an honest and curious ad-
versary, which cannot launch any attack.

In QB, we have so far assumed that the adversary is unaware
of the exact workload-skew (more than what is visible via the ad-
versarial view of the queries) due to queries for each predicate.
However, the knowledge of the workload-skew can be exploited by
the adversary to learn associations between encrypted and plain-
text values, breaking the security of the scheme. We illustrate the
workload-skew based attack (see Figure 9a) and also our approach
for addressing it for the base case of QB. The case of multiple tu-
ples with multiple values can be generalized trivially.

ns1, ns2, ns3

ns4, ns5, ns6

ns7, ns8, ns9

Sensitive bins Non-sensitive bins

NSB1

NSB0

NSB2
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SB1

SB2

s2, s5, s8

s3, s6, s9
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(a) The workload-skew attack.
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(b) A solution.

Figure 9: The workload-skew attack and solution under QB, where
ns1, ns4, and ns7 are frequent predicates.

Figure 9a shows bins created by Algorithm 1 for 9 sensitive
values and their associated 9 non-sensitive values. Consider the
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values ns1, ns4, and ns7 occur most frequently in the query work-
load. Hence, in this example, the adversary can trivially figure out
by observing the sensitive tuple retrieval that only the bin SB0 has
the associated sensitive values with ns1, ns4, and ns7. The rea-
son is that these four bins are retrieved more frequently compared
to any other bin. Thus, the adversary can determine that the en-
crypted values s1, s4, and s7 are associated with either ns1, ns4,
or ns7. This is more information than what the adversary had prior
to the query execution since each sensitive value, e.g., s1, could
be any of the 9 non-sensitive values. However, it is hard for the
adversary to find out which sensitive value out of the three sensi-
tive values of the bin SB0 is exactly associated with ns1, ns4, or
ns7.18 In order to prevent the workload-skew attack, we need to
allocate sensitive values carefully so that the sensitive values asso-
ciated with frequent selection predicates are distributed over all the
bins. The strategy for handling the workload-skew attack in QB
under the assumption of having k · |SB |, where k > 0, frequent
selection predicates is as follows:

1. Create bins. Find two largest divisors, say x ≥ y, of |NS |, cre-
ate NSB = d|NS |/xe non-sensitive bins, and x sensitive bins
(Lines 3 of Algorithm 1 or Line 6 of Algorithm 3).

2. Assign non-sensitive values. Create groups, each of size x, of the
frequent predicates, resulting in u ≤ NSB groups. Assign one
group to one non-sensitive bin. Now, assign all the remaining
non-sensitive values, as follows: if any existing non-sensitive bin
has less than x values, then assign the remaining values to the
non-sensitive bin such that bin size is x, and then, assign further
remaining values to other (empty) non-sensitive bins.

3. Assign sensitive values. Assign the sensitive values associated
with a non-sensitive value, say nsj = NSBz[j], where 0 ≤ j ≤
x− 1, to the jth sensitive bin at the zth position.

By following the above steps, Figure 9b shows 3 sensitive bins
in the case of ns1, ns4, and ns7 as the frequent query predicates.
Note that the execution of QB using this strategy insists on retriev-
ing all the sensitive bins for answering frequent predicates. Thus,
the adversary cannot determine which bin has a sensitive value as-
sociated with the values ns1, ns4, or ns7.19

A.2 Non-identical Searchable Attribute-
based Column-Level Sensitivity

We showed a way to deal with the column-level sensitivity
when sensitive and non-sensitive sides have an identical searchable
attribute. However, a slight modification is required when both the
sides do not have an identical searchable attribute.

For example, consider a query to retrieve all details of Eve
from Employee1 (see Figure 2a) and Employee3 relations (see Fig-
ure 2c). Note that the DB owner can retrieve all tuples belonging
to one of the non-sensitive bins having Eve from the relation Em-
ployee3. However, she cannot fetch any sensitive tuple from the
Employee1 relation, because the Employee1 relation does not con-
tain the attribute FirstName.

In order to answer such a query where a searchable attribute
is absent in either sensitive or non-sensitive side, we need to delay
the query execution on the side that is not containing the search-
able attribute. Here, we create on-the-fly bins using the following

18We are not assuming that a sensitive bin is not associated with
each non-sensitive bin. But, because of heavy-hitter queries, the
other bins are retrieved less frequently than the bins having frequent
selection predicates.

19If there are less then y frequent predicates in a non-sensitive bin,
then we need to send fake queries as frequent as frequent predi-
cates, leading to retrieval of each sensitive bin.

strategy, where assume that the sensitive dataset does not contain
the searchable attribute.

1. Bin creation. Find two approximately square factors, say x, y,
x ≥ y, of |NS |. Create |S|/x sensitive bins and dNS/xe non-
sensitive bins, each is filled with x values of a searchable at-
tribute, say Ai.

2. Sensitive value allocation and bin retrieval.
(a) Consider a query for a value nsi on the attribute Ai, which

does not exist in the sensitive side. Retrieve a non-sensitive
bin Bnsj that contains the value nsi.

(b) After retrieving tuples corresponding to the bin Bnsj , the DB
owner is able to know a common attribute in the sensitive and
the non-sensitive parts. Based on this information, the DB
owner creates sensitive bins by distributing the values of the
common attribute over the sensitive bins so that each sensi-
tive bin must contain at least one value corresponding to the
retrieved non-sensitive bin. The rule to distribute sensitive val-
ues is as follows: if nsi = Bnsj [z], then allocate an associated
sensitive value, say si, to a bin Bsj at the position z.

(c) Follows steps 2(a) and 2(b) for other queries on the searchable
attribute.

For example, in order to answer the above-mentioned query,
we first create bins on the non-sensitive side on the first name at-
tribute of the relation Employee3, and then, retrieve tuples of a bin
containing employee first name as Eve. By this retrieval, the DB
owner is able to know EId of Eve, i.e., E103.

Now, the DB owner creates sensitive bins on the EId attribute
by distributing ids associated with the values of the retrieved non-
sensitive bin over the sensitive bins. Now, the DB owner fetches
all the tuples from the relation Employee1 according to one of the
sensitive bins containing EId = E103.20

A.3 Join Queries
Let R be a parent relation that is partitioned into a sensitive

relation Rs and a non-sensitive relation Rns . Let S be a child
relation that is partitioned into a sensitive relation Ss and a non-
sensitive relation Sns . We assume that a tuple of the relation Rs
cannot have any tuple in the child table Rns . In the partitioned
computing model, the primary-key-to-foreign-key join of R and S
is computed as follows:

R ./ S = (Rs ./ Ss) ∪ (Rns ./ Sns) ∪ (Rns ./ Ss)

Note that our objective is not to build a secure cryptographic
technique for joining the sensitive relations. While we use any
existing cryptographic technique, e.g., CryptDB [64], SGX-based
Opaque [87], [9], [62], or [27] to join sensitive relations, our ob-
jective is twofold: (i) hide which sensitive tuples (of the relation
Ss) join with a non-sensitive tuple (of the relation Rns ), and (ii)
hide which are the encrypted tuples of the output of (Rs ./ Ss) ∪
(Rns ./ Ss) associated with a non-sensitive tuple of Rns ./ Sns .

In order to join, the relations Rns and Ss, we follow the ap-
proach given in [60] that pre-computes all the tuples of Rns that
join with Ss. We call all such tuples of Rns as pseudo-sensitive
tuples. In [60], the authors found that the size of pseudo-sensitive
data does not need to consider the entire Rns as sensitive. Partic-
ularly, at 10% of sensitivity level, pseudo-sensitive data is only a
fraction (25%) of the entire database.

20We consider the relations Employee1 and Employee3 for simplic-
ity purposes. The reader may point out that executing a query only
on these relations leaks the information that Eve is not working in a
sensitive department; however, we are able to handle such leakage.
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In our join strategy, before outsourcing the relations R and S,
the DB owner finds pseudo-sensitive tuples of Rns and keeps them
with sensitive tuples of Rs, resulting in a new relation, denoted
by Rps containing sensitive and pseudo-sensitive tuples. Now, the
DB owner outsources encrypted relations Rps , Ss and clear-text
relations Rns , Sns . Thus,

R ./ S = (Rns ./ Sns) ∪ (Rps ./ Ss)

We use any cryptographic technique for Rps ./ Ss, and obvi-
ously, join of the relations Rns and Sns is carried out in the cleart-
ext. The DB owner uses QB to retrieve any tuple after the join oper-
ation. The above strategy can also be extended to non-foreign-key
joins by encrypting pseudo-sensitive tuples of Sns with Ss. How-
ever, in this case, we need to avoid join of pseudo-sensitive tuples
ofRns and Sns in encrypted domain. Hence, the DB owner can add
an attribute to each sensitive relation to mark such pseudo-sensitive
tuples.

A.4 Range Queries
Let A be an attribute on which we want to execute a range

query. For answering a range query, we convert it into the selection
query, which can be executed using QB. However, a careless exe-
cution of QB for answering a range query, which is converted into
selection queries, may result in retrieval of either entire sensitive
or non-sensitive data. For example, consider 16 sensitive values,
say s1, s2, . . . s16, and their associated non-sensitive values, say
ns1,ns2, . . . ,ns16, where the sensitive value si is associated with
the non-sensitive value nsi. Figure 10 shows a way to assign these
values to bins.

ns1, ns5, ns9, ns13

Sensitive bins Non-sensitive bins

NSB2

NSB1

NSB3

s5, s6, s7, s8 

SB1

SB2

SB3

s1, s2, s3, s4

s9, s10, s11, s12 

s13, s14, s15, s16 SB0

ns2, ns6, ns10, ns14

ns3, ns7, ns11, ns15

ns4, ns8, ns12, ns16
NSB0

Figure 10: A way to allocate 16 sensitive and non-sensitive values
to bins by following Algorithm 1.

Consider a range query for values s1 to s4. Answering this
range query using QB will result in retrieval of the entire non-
sensitive data and the bin SB1. Our objective is to create bins in a
way that results in a few tuple retrieval.

We describe a procedure for the case |S| ≤ |NS |, as the re-
striction is followed by Algorithm 1 in §5.1. We use the example
of 16 sensitive and 16 non-sensitive values of the attributeA. In or-
der to answer range queries, the DB owner builds a full binary tree
on the unique values of the attribute A of the non-sensitive relation
and traverses the tree to find a node that covers the range. Thus,
the DB owner retrieves tuples satisfying a larger range query that
also covers the desired range query. Note that many papers [40, 51,
52, 23] used the same approach of fetching a large range value to
satisfy the desired range value, and hence, preventing exact range
values to be revealed to the adversary.

Full binary tree and bin creation. The DB owner first builds a
full binary tree for the values of the attribute A of the non-sensitive
relation; see Figure 11 for 16 non-sensitive values. For each level
of the tree, the DB owner applies Algorithm 1 that takes nodes
of the level as inputs. In particular, for the leaf nodes, i.e., level 0,
Algorithm 1 takes 16 non-sensitive values, and produces 4 sensitive
and 4 non-sensitive bins, by following Lines 3-7 of Algorithm 1.

𝑛𝑠12 𝑛𝑠13 𝑛𝑠14 𝑛𝑠15 𝑛𝑠16𝑛𝑠9 𝑛𝑠10 𝑛𝑠11𝑛𝑠8𝑛𝑠7𝑛𝑠6𝑛𝑠5𝑛𝑠4𝑛𝑠3𝑛𝑠2𝑛𝑠1

𝑁12 𝑁13 𝑁14 𝑁15 𝑁16𝑁11 𝑁17 𝑁18

𝑁22 𝑁23 𝑁24𝑁21

𝑁32

𝑁41

𝑁31

𝑁11
′ 𝑁12

′ 𝑁13
′ 𝑁14

′ 𝑁15
′ 𝑁16

′ 𝑁17
′

𝑁21
′ 𝑁22

′ 𝑁23
′

𝑁31
′

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 11: A full binary tree with some additional nodes for 16
non-sensitive values.

At the level 1, Algorithm 1 takes 8 inputs that represent the
nodes (N11, N12, . . . , N18; see white nodes in Figure 11) at the
level 1, and each input value of the level 1 holds two non-sensitive
values, which are child nodes of a level 1’s node. For example, the
nodeN11 holds two values ns1,ns2. For the 8 values, Algorithm 1
provides two non-sensitive bins (each is containing 8 values) and
four sensitive bins (each is containing 4 values). Let NSB ij be the
jth non-sensitive bin at the ith level, and let SB ij be the jth sensi-
tive bin at the ith level. Thus, Algorithm 1 produces the following
bins:

NSB10 containing 〈N11, N12, . . . , N14〉,
NSB11 containing 〈N15, N16, . . . , N18〉,

SB10 containing 〈s1, s2, s9, s10〉,
SB11 containing 〈s3, s4, s11, s12〉,
SB12 containing 〈s5, s6, s13, s14〉,
SB13 containing 〈s7, s8, s15, s16〉.

At level 2, Algorithm 1 takes 4 inputs that represent the nodes
(N21, N22, N23, N24; see white nodes in Figure 11) at the level 2,
and each input value of the level 2 holds four non-sensitive values,
which are grandchild nodes of a level 2’s node. For the 4 input val-
ues, Algorithm 1 provides two non-sensitive bins (each is contain-
ing 8 values) and two sensitive bins (each is containing 8 values),
as follows:

NSB20 containing 〈N21, N22〉,
NSB21 containing 〈N23, N24〉,

SB20 containing s5, s6, s7, s8, s9, s10, s11, s12,
SB21 containing s1, s2, s3, s4, s13, s14, s15, s16.

The DB owner follows the same procedure for the higher nodes,
except the root node and child nodes of the root node.

Further, at each level except the root node, the child nodes of
the root node, and the leaf nodes, the DB owner creates additional
nodes (see gray-colored nodes in Figure 11) that become parent
nodes of the lower level’s two adjacent nodes that do not have a
common parent node. The algorithm given in [23] also uses these
additional nodes for answering a range query. For example, at the
level 2 in Figure 11, the DB owner creates 7 such nodes. Let NSB ′ij
be the jth non-sensitive bin at the ith level for these additional
nodes, and let SB ′ij be the jth sensitive bin at the ith level for these
additional nodes. Algorithm 1 takes these 7 inputs and produces 2
non-sensitive bins (each is containing 8 values) and 4 sensitive bins
(each is containing 8 values), as follows:21

NSB ′10 containing 〈N ′11, N ′12, . . . , N ′14〉,
NSB ′11 containing 〈N ′15, N ′16, N ′17, 2 fake tuples〉,

SB ′10 containing 〈s2, s3, s10, s11〉,
SB ′11 containing 〈s4, s5, s12, s13〉,
SB ′12 containing 〈s6, s7, s14, s15〉,

SB ′13 containing 〈s8, s9, 2 fake tuples〉.
21Note that the bins NSB ′11 and SB ′13 will ask to fetch two fake
tuples each to maintain an identical-sized bin.

18



Bin retrieval and answering range queries. We provide two ap-
proaches: best-match method and least-match method, for retriev-
ing the bins in answering a range query.
Best-match method. This method traverses the tree in a bottom-
up fashion and finds a node that covers the entire range. Then,
it retrieves a non-sensitive bin corresponding to this node and a
sensitive bin, by following Algorithm 2.

For example, if the query is for values ns1 to ns4, then by
traversing the tree (see Figure 11) in a bottom-up fashion, the DB
owner retrieves a non-sensitive bin corresponding to the level 2,
since the node N21 covers the entire range. Thus, the DB owner
retrieves the bins NSB20 and SB21.
Least-match method. Assume a query is for values ns8 to ns12.
The best-match method will find only the root node that satis-
fies this query, and hence, it will result in retrieval of entire non-
sensitive or sensitive relation. Thus, we propose a different method
that breaks the range query into many sub-range queries and finds
minimal set of nodes that cover the range.

For example, the node N23 satisfies the query for value ns9 to
ns12, and the leaf node having the value 8 satisfies the query for
the value ns8. Thus, the DB owner retrieves the bins NSB21 and
SB20 to satisfy the query for the value ns9 to ns12, and a sensitive
bin and a non-sensitive bin to satisfy the query for the value ns8.
Aside: using additional nodes for answering a range query by
following Algorithm 2. Assume a query is for values ns4 to ns7.
The best-match method finds only the root node that satisfies the
query, and hence, results in retrieval of the entire non-sensitive or
sensitive relation. In contrast, the least-match method will break
the query into sub-range queries, such as (Q1) a query for ns4,
a query for ns5,ns6, and a query for ns7, or (Q2) four selection
queries one for each value.

The first query (Q1) will find the node N13 that covers the val-
ues ns5,ns6, and two leaf nodes one for ns4 and another for ns7.
This will result in retrieval of 28 tuples, such as one sensitive bin
and non-sensitive bin for s4 (containing 4 tuples in each; see Fig-
ure 10), one sensitive bin and non-sensitive bin for s7 (containing
4 tuples in each; see Figure 10), and the bin NSB10 (containing
8 tuples) and SB12 (containing 4 tuples) for answering the query
for a range ns5 to ns6. However, the second query (Q2) will be
worse in term of retrieving the tuples. It will result in retrieval of
the entire non-sensitive data (see Figure 10).

In order to reduce the number of retrieved tuples, the DB owner
can use the bins for the additional nodes. In particular, the DB
owner finds that the nodes N ′12 and N ′13 that satisfy the value ns4-
ns5 and ns6-ns7, respectively. Thus, the bins NSB ′10 (containing
8 tuples), SB ′11 (containing 4 tuples), SB ′12 (containing 4 tuples)
can fulfill the query, and will result in retrieval of 16 tuples.

Note that by using the bins for the additional nodes, one can
answer queries for two adjacent nodes that do not share a common
parent in the original full binary tree, for example, values 8 and 9.

A.5 Insert Operation and Re-binning
QB does not allow outsourcing new tuples immediately as the

new tuples arrive at the DB owner. The DB owner collects enough
number of tuples before outsourcing them, while she can either up-
date the existing bins (by increasing an identical size of each bin)
or create all new bins.

Particularly, the DB owner waits for new tuples until she col-
lects new sensitive and non-sensitive values equals to the number of
existing sensitive and non-sensitive bins such that each bin receives
a new value. Let p and q be the number of existing sensitive and
non-sensitive bins, respectively. Note that when collecting p sensi-
tive and q non-sensitive values, the DB owner does not outsource

these values if they will not become a part of each existing sensi-
tive or non-sensitive bin. If the new values become a part of only
one sensitive and one non-sensitive bin, it reveals an association of
values.

However, an insertion of more values in existing bins incur the
overhead when retrieving a bin, as shown in Figure 8c and Exper-
iment 1 §7. Hence, Algorithm 1 is re-executed when the overhead
crosses a user-defined threshold.

Now, we describe a procedure for outsourcing new tuples while
using the existing sensitive and non-sensitive bins. Let si and nsj
be the value of new sensitive and non-sensitive tuples, respectively.
When inserting new tuples, the value si or nsj may exist in the out-
sourced data, and based on the existence of the values we classify
them into four groups, as follows: (i) old sensitive value (old-S):
the value si exists in the outsourced sensitive data, (ii) new sensitive
value (new-S): the value si does not exist in the outsourced sensi-
tive data, (iii) old non-sensitive value (old-NS): the value nsj ex-
ists in the outsourced non-sensitive data, and (iv) new non-sensitive
value (new-NS): the value nsj does not exist in the outsourced non-
sensitive data.

Based on the above-mentioned four types of values, the follow-
ing four possible insert scenarios are allowed while using QB.

1. Inserting old-S and old-NS. This scenario is trivial to handle
and does not require any update to the existing bins. The DB
owner outsources the encrypted sensitive tuples and cleartext
non-sensitive data.

2. Inserting new-S and new-NS. The DB owner increases the size of
each bin by one. If the values si and nsi are associated, then the
DB owner inserts the values into existing associated bins. If the
values si and nsi are not associated, the DB owner inserts the
values randomly to bins, one sensitive (or non-sensitive) value in
each existing sensitive (or non-sensitive) bin.

3. Inserting old-S and new-NS. Inserting tuples of si does not re-
quire an update to the sensitive bins. The DB owner checks
whether the value nsj has an associated sensitive value or not in
the outsourced data, by following Line 6-7 of Algorithm 2. If the
value nsj has an associated sensitive value, say sk, then the DB
owner updates the non-sensitive bin associated with a sensitive
bin holding sk with the value nsj , according to Line 6 of Algo-
rithm 1. If the value nsj has no associated sensitive value, then
the DB owner randomly inserts each non-sensitive value, one per
non-sensitive bin.

4. Inserting new-S and old-NS. This case is just opposite of the pre-
vious case.

Note that all the four scenarios may require to outsource some fake
tuples to have identical-sized sensitive bins. The update/delete op-
eration can also be done as an insert operation, where some addi-
tional tuples are outsourced to notify the non-existence of tuples.

A.6 Conjunctive Queries
As defined, QB only works for selection queries with a single

attribute in the search clause. Conjunctive queries that contain sev-
eral such conjuncts can also be supported in several ways. First,
note that QB can be applied to multiple attributes, say A and B,
in a relation. During query processing, if a query refers to both
attributes A and B, we can select the more selective index and ex-
ecute QB on it without inference attacks. Using QB on both at-
tributes simultaneously, however, unless done carefully, can lead
to leakage. An approach to apply QB is to consider attributes that
appear commonly together in queries as a single (paired) attribute.
Thus, values of this paired attribute would be attribute value pairs
on which QB can be applied. In general, the relation scheme will
need to be partitioned into attribute subsets on which QB can be
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applied. During a query execution, the query processing algorithm
will choose the corresponding attribute subset that is most benefi-
cial (will result in least overhead) to execute the query. One such
solution is to create partitions of singleton attributes but then con-
junctive queries will run on a single attribute and reduce to the first
solution

B. SECURITY PROOFS OF QB
We prove that QB is secure and satisfies the definition of parti-

tioned data security (Theorem 2) by first proving that all the sensi-
tive bins are associated with all the non-sensitive bins (Theorem 1),
which is intuitively clear by Example 4. Recall that the only way a
surviving match could be removed is if there is no sensitive value
in a sensitive bin, say SBj that does not have an associated non-
sensitive value. In this case for answering a value belonging to
SBj , we retrieve either only the bin SBj or the bin SBj with any
randomly selected non-sensitive bin. Note that the adversary can-
not learn anything from the encrypted data, since the keys are only
known to the DB owner.

Theorem 1 Let |S| and |NS | be the number of sensitive and non-
sensitive values, respectively. By following Algorithm 1, |S| and
|NS | values are distributed over SB sensitive and NSB non-
sensitive bins, respectively. Answering a set of queries using QB
(Algorithm 2) will not remove any surviving matches of the bins
and that leads to preserve all the surviving matches of the values.

PROOF. We show that QB will not remove any surviving
matches of the bins by showing that a sensitive bin, say SBj , must
be associated with all the non-sensitive bins. A similar argument
can be proved for any non-sensitive bin. Let y be the number of
sensitive values in the bin SBj , and let p ≥ y, (p = NSB ) be
the number non-sensitive bins. We will prove the following three
arguments:

1. If a sensitive value, say si ∈ SBj , is associated with a non-
sensitive value (i.e., ∃nsz ∈ Rns : nsz

a
= si), then two bins,

SBj , and one non-sensitive bin, holding the value nsz , are re-
trieved.

2. If a sensitive value, say si ∈ SBj , is not associated with any

non-sensitive value (i.e., ∀nsj ∈ Rns : si
a

6= nsj), then the bin
SBj and one of the non-sensitive bins are retrieved. Following
that, if all the sensitive values of the bins SBj are not associated
with any non-sensitive value (i.e., ∀nsj ∈ Rns , ∀si ∈ SBj :

si
a

6= nsj), then the bin SBj and y different non-sensitive bins
are retrieved.
By proving the first and second arguments, we will show that if
there are only y non-sensitive bins, then a sensitive bin must be
associated with all the y non-sensitive bins. The following third
argument will consider more than y non-sensitive bins.

3. If there are more than y non-sensitive bins (say,
NSBy,NSBy+1, . . . ,NSBp) having x values that are
not associated with any sensitive value (i.e., ∀nsj ∈
NSBy ∨ NSBy+1 ∨ . . . ∨ NSBp,nsj

a

6= si, i = 1, 2, . . . , |S|),
then each of these non-sensitive bins must be associated with the
bin SBj .

By satisfying the above three arguments, we prove that, thus, the
bin SBj is associated with all non-sensitive bins, and hence, all
surviving matches of the bins and, eventually, values are preserved.
First case. The value si is allocated to (i modulo x)th sensitive
bin at an index, say z, where z = 0, 1, . . . y − 1, and its associated
non-sensitive value is allocated to the (i modulo x)th position of

the zth non-sensitive bin. When answering a query for si accord-
ing to the rule R1, the bin SBj with the bin NSBz are retrieved.
Consequently, the desired tuples containing si and its associated
non-sensitive value are retrieved, and that are correct answers to
the query.
Second case. When answering a query for the value si = SBj [u]
(u ∈ 0, 1, y − 1) that does not have any associated non-sensitive
value, by following the rule R1, the bin SBj with one of the non-
sensitive bin NSBu are retrieved. Moreover, answering queries for
all the y values (0, 1, y − 1) of the bin SBj , by following rule
R1, requires us to retrieve the SBj with all the y − 1 (0, 1, y − 1)
non-sensitive bins.
Third case. Since the non-sensitive bin, say NSBz , where z =
y, y + 1, . . . , p, must hold a value at the jth position, by following
the rule R2, the bin NSBz and the sensitive bin SBj are fetched
for answering a query for nsj .

Therefore, the bin SBj is associated with all the non-sensitive
bins, and hence, all the surviving matches between the values of the
bin SBj and all the non-sensitive bins are also maintained.

Since we proved all sensitive bins are associated with all the
non-sensitive bins, based on this fact, we will show that the first
condition of partitioned data security holds to be true for any
query. Here, we do not show the second equation of partitioned
data security definition (i.e., Pradv [si

r∼ sj |X] = Pradv [si
r∼

sj |X, q(w)(Rs, Rns)[A]]); recall that here in the base case, we as-
sumed that a value has only a single sensitive tuple; hence, the
condition holds true.

Theorem 2 (Preserve partitioned data security) Let R be a re-
lation containing sensitive and non-sensitive tuples. Let Rs and
Rns be the sensitive and non-sensitive relations, respectively. Let
q(w)(Rs, Rns)[A] be a query, q, for a value w in the attribute A
of the Rs and Rns relations. Let X be the auxiliary information
about the sensitive data, and PrAdv be the probability of the ad-
versary knowing any information. Let ei be the ith sensitive tuple
value in the attribute A of the relation Rs and nsj is the jth non-
sensitive value in the attribute A of the relation Rns . An execution
of a set of queries on the attribute A on the relations using QB
leads to the following equation to be true:

Pradv [ei
a
= nsj |X] = Pradv [ei

a
= nsj |X,AV ]

where i ∈ 1, 2, . . . , |S| and j ∈ 1, 2, . . . , |NS |.

Proof sketch. We provide an example of four values to show the
correctness of the above theorem. Let v1, v2, v3, and v4 be val-
ues containing only one sensitive and one non-sensitive tuple. Let
E1, E2, E3, and E4 be encrypted representations of these values
in an arbitrary order, i.e., it is not mandatory that E1 is the en-
crypted representation of v1. In this example, the cloud stores an
encrypted relation, say Rs, containing four encrypted tuples with
encrypted representations E1, E2, E3, E4 and a clear-text relation,
say Rns , containing four clear-text tuples with values v1, v2, v3,
v4. The objective of the adversary is to deduce a clear-text value
corresponding to an encrypted value. Note that before executing
a query, the probability of an encrypted value, say Ei, to have the
clear-text value, say vi, 1 ≤ i ≤ 4 is 1/4, which QB maintains at
the end of a query.

Assume that the user wishes to retrieve the tuple containing v1.
By following QB, the user asks a query, say q(E1, E3)(Rs), on the
encrypted relationRs forE1, E3, and a query, say q(v1, v2)(Rns),
on the clear-text relation Rns for v1, v2. After executing the
queries, the adversary holds an adversarial view given in Table 10.
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Exact query value (hid-
den from adversary)

Returned tuples/Adversarial view

Sensitive data Non-sensitive data
v1 E1,E3 v1,v2

Table 10: Queries and returned tuples/adversarial view after exe-
cuting a query for v1, by following Algorithm 2.

In this example, we show that the probability of finding the
clear-text value of an encrypted representation, say Ei, 1 ≤ i ≤ 4,
remains identical before and after a query. In order to show that
when a query comes for 2 ×

√
n values by following QB, where

n is the number of values in the non-sensitive relation,
√
n values

are asked for the sensitive relation and
√
n values are asked for the

non-sensitive relation, we need to figure out:

1. All possible allocations of the non-sensitive
√
n values,

say v1, v2, . . . , v√n, to
√
n encrypted sensitive values, say

E1, E2, . . . , E√n. Here, we use the term allocation to show
the fact that the encrypted representation of Ei has the clear-text
value vi.
In our example of four values, we find allocations of four non-
sensitive values v1, v2, v3, v4 to encrypted representation E1,
E2, E3, E4.

2. All possible allocations of
√
n non-sensitive values, except one

non-sensitive value, say vi, that is allocated to an encrypted sen-
sitive value, say Ei, to the remaining encrypted sensitive values.
In the case of four values and above-mentioned queries, we find
allocations of the non-sensitive values v2, v3, v4 to the encrypted
sensitive values E2, E3, E4 while assuming that the encrypted
representation of v1 is E1.

The ratio of the above two provides the probability of finding a
clear-text value corresponding to its encrypted value after the query
execution.

When the query arrives for 〈E1, E3, v1, v2〉, the adversary gets
the fact that the clear-text representation of E1 and E3 cannot be
v1 and v2 or v3 and v4. If this will happen, then there is no way
to associate a sensitive bin with each non-sensitive bin. Now, if
the adversary considers the clear-text representation of E1 is v1,
then the adversary has the following four possible allocations of
the values v1, v2, v3, v4 to E1, E2, E3, E4:

〈v1, v2, v3, v4〉, 〈v1, v2, v4, v3〉,
〈v1, v3, v4, v2〉, 〈v1, v4, v3, v2〉.

However, the allocations 〈v1, v3, v2, v4〉 and 〈v1, v4, v2, v3〉 to
E1, E2, E3, and E4 cannot exist. Since the adversary is not aware
of the exact clear-text value of E1, the adversary also considers the
clear-text representation of E1 is v2. This results in four more pos-
sible allocations of the values to E1, E2, E3, and E4, as follows:

〈v2, v1, v3, v4〉, 〈v2, v1, v4, v3〉,
〈v2, v3, v4, v1〉, 〈v2, v4, v3, v1〉.

However, 〈v2, v3, v1, v4〉 and 〈v2, v4, v1, v3〉 cannot exist.
Similarly, assuming the clear-text representation of E1 is v3 or v4,
we get the following 8 more possible allocations of the values to
E1, E2, E3, and E4:

〈v3, v1, v2, v4〉, 〈v3, v2, v1, v4〉,
〈v3, v4, v1, v2〉, 〈v3, v4, v2, v1〉,
〈v4, v1, v2, v3〉, 〈v4, v2, v1, v3〉,
〈v4, v3, v1, v2〉, 〈v4, v3, v2, v1〉.

Here, the following four allocations of the values to encrypted
representation cannot exist:

〈v3, v1, v4, v2〉, 〈v3, v2, v4, v1〉,
〈v4, v1, v3, v2〉, 〈v4, v2, v3, v1〉.

Thus, the retrieval of the four tuples containing one of the fol-
lowing: 〈E1, E3, v1, v2〉, results in 16 possible allocations of the
values v1, v2, v3, and v4 to E1, E2, E3, and E4, of which only
four possible allocations have v1 as the clear-text representation
of E1. This results in the probability of finding E1 = v1 is 1/4.
A similar argument also holds for other encrypted values. Hence,
an initial probability of associating a sensitive value with a non-
sensitive value remains identical after executing a query.

Thus, we can conclude the following:

1. All possible allocations of
√
n non-sensitive values, except one

non-sensitive value, say v1, that we allocate to an encrypted sen-
sitive value, say E1, to the remaining encrypted sensitive values
is (n − 1)! − x, where n is the number of values in the non-
sensitive relation and x is the number of allocations of values
v2, v3, . . . , v√n to E2, E3, . . . , E√n that cannot exist.

2. All possible allocations of the non-sensitive
√
n values,

say v1, v2, . . . , v√n, to
√
n encrypted sensitive values, say

E1, E2, . . . , E√n, is n× ((n−1)!−x). This is true because we
cannot allocate any combination of the values asked in the query
to any encrypted representations that are asked by the query.

Thus, the retrieval of 2×
√
n values results in n×((n−1)!−x)

possible allocations of
√
n non-sensitive values to

√
n encrypted

sensitive values, while (n−1)!−x allocations exist when a queried
non-sensitive value is assumed to be the clear-text of a queried en-
crypted representation. Therefore, the probability of finding the
exact allocation of the non-sensitive values to encrypted sensitive
value while considering a non-sensitive value is the clear-text of an
encrypted value is (n−1)!−x

n×((n−1)!−x) = 1
n

.

B.1 Game-Theoretic Security Proof
Now, we show another way to proof the partitioned data secu-

rity: Our partition computation security definition is also identical
to the standard security definition appeared in [32, 57]. In our con-
text, we need to show that an adversary cannot distinguish any two
encrypted elements based on the query (bin, in our case). In the
game-theoretic setting, we can define the partitioned data security
as follows:

For any probabilistic polynomial time adversary having an en-
crypted sensitive data Rs, a non-sensitive cleartext data Rns , and
any two queries, q1(w1)(Rs, Rns)[A] and q2(w2)(Rs, Rns)[A],
for values w1 and w2, respectively, on an attribute A, the adver-
sary cannot distinguish w1 or w2 (as associated or non-associated
values) from the encrypted sensitive data based on the executed
computations for either w1 and w2.

In order to show that the partitioned data security follows the
above definition, we need to proof the following theorem.

Theorem 3 If the adversarial cloud can distinguish two input sen-
sitive values in a sensitive bin in Algorithm 2, then either the under-
lying cryptography is susceptible to attacks or QB does not provide
partitioned data security.

In QB, recall that the adversarial view consists of the en-
crypted tuple identity and cleartext non-sensitive tuples that are
sent in response to a query. Hence, for each query, the adversar-
ial view always contains encrypted

√
|NS | sensitive and

√
|NS |

non-sensitive values that are returned, where |NS | is the number of
non-sensitive values (assuming |S| < |NS |). The objective of the
adversary is in finding a value that is common in

√
|NS | sensitive

and
√
|NS | non-sensitive values, as the desired user query value.

In order to show that the adversary can never know the exact query
value, we consider two instances of the datasets, as follows:
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• D1: that includes encrypted sensitive dataset, say R1
s , and clear-

text non-sensitive data, say R1
ns .

• D2: that includes encrypted sensitive dataset, say R2
s , and clear-

text non-sensitive data, say R2
ns .

Here, R1
ns = R2

ns , and R1
s differs from R2

s only at one value each,
say v1 and v2, i.e., v1 is inR1

s butR2
s and v2 is inR2

s butR1
s . Here,

we show that if the adversary can distinguish the single different
value in R1

s and R2
s , she can break QB. In this setting, the cloud

executes the input queries (sensitive and non-sensitive bins) on D1

and D2 and creates adversarial views.
By our assumption of ciphertext indistinguishability (men-

tioned in §3), the adversary cannot distinguish that R1
s and R2

s are
identical or different. Note that if the DB owner uses a weak cryp-
tographic technique, e.g., deterministic encryption, then the adver-
sary can find which value is the only single values of R1

s that is
different from values of R2

s .
Now assume the queries for the value v1 and v2 that will

be mapped to the set of queries qv1(Wns)(R
1
ns), qv1(Ws)(R

1
s),

qv2(Wns)(R
2
ns), and qv2(Ws)(R

2
s) by the DB owner. Assume

that the sets qv1(Wns)(R
1
ns) and qv2(Wns)(R

2
ns) are identical and

have v1 and v2. Hence, qv1(Ws)(R
1
s) and qv2(Ws)(R

2
s) may re-

trieve different or identical tuples, as follows: If qv1(Ws)(R
1
s) and

qv2(Ws)(R
2
s) retrieve the same tuples from R1

s and R2
s (due to

having all the
√
|NS | − 1 identical values in the bins), respec-

tively, the cloud can never find which set is having v1 or v2, due
to ciphertext indistinguishability. In the case, when qv1(Ws)(R

1
s)

and qv2(Ws)(R
2
s) retrieve different tuples from R1

s and R2
s (due

to placing v1 and v2 in different bins), respectively, it also does
not make sure that the query is for v1, v2, or any other value of
qv1(Wns)(R

1
ns)/qv2(Wns)(R

2
ns). Thus, the adversarial view will

be identical for any query executed over D1 or D2, and the adver-
sary based on query execution using QB cannot find which sensitive
value has an associated non-sensitive value or not.

C. PROOF OUTLINE FOR THE GENERAL
CASE

The following lemma shows how many fake tuples are required
to be added to a sensitive bin, resulting in identical numbers of
tuples in each sensitive bin.

Lemma 1 Let tl and ts be the largest and smallest number of tu-
ples have an identical value, respectively. By following the strategy
presented in Section 5.3, the strategy adds at most max (tl, tl− ts)
fake tuples in a sensitive bin to have identical numbers of tuples in
each bin.

Now, we borrow notations from Theorem 2 that also holds for the
general case of QB and give a proof outline of the second condition
of partitioned data security.

Theorem 4 (Preserve partitioned data security) An execution of
a set of queries on an attribute, say A, on the relations Rs and
Rns , where different values of the attribute A have different num-
bers of tuples, using QB leads to the following equations to be true:
Pradv [vi

r∼ vj |X] = Pradv [vi
r∼ vj |X, q(w)(Rs, Rns)[A]],

where vi, vj ∈ Domain(A) of the relation Rs.

Proof sketch. Recall that we are not dealing with how does an en-
cryption mechanism reveal an order of sensitive values. In our con-
text, the probability of relating any two sensitive values will not
be identical when the number of output tuples to a query to one of
the values is more than the number of tuples to a query to another

value. Since we add fake tuples to sensitive bins, each sensitive
bin has identical numbers of tuples. Hence, having a heavy-hitter
non-sensitive value that is associated with a heavy-hitter sensitive
value, the adversary cannot distinguish between any two sensitive
bins and deduce which sensitive bin holds the heavy-hitter sensi-
tive value. Thus, the probability of relating two sensitive values
remains a constant after answering queries for any two values.

D. CLOUD COMPUTATION COST ESTI-
MATION FOR A SELECTION QUERY

The selection operation at the cloud is performed by access-
ing indexes on the non-sensitive data and applying a cryptographic
search technique, which may be indexable (e.g., DSSE [43]) or
non-indexable, on the sensitive data. This section shows the com-
putation cost at the cloud while using non-indexable cryptographic
techniques (Lemma 2) and indexable cryptographic techniques
(Lemma 3).

Lemma 2 (Computation cost at the cloud side—non-
indexable) Let d and r be unique number of values and an
average number of tuples corresponding to a value, respectively,
in a key attribute of a relation, say D (= d · r). Let |NS | be the
number of non-sensitive data values. Let α < 1 be a ratio between
the sensitive data and the entire dataset. In QB, the computation
cost at the cloud using a non-indexable cryptographic technique is
O(αD +

√
|NS |(r + log(1− α)D)).

Proof sketch. The cloud reads each sensitive tuple, resulting in
α ·D cost, while at the same time the cost of searching |SB | pred-
icates can be absorbed, as explained in §6.2.1. Hence, the cost for
searching the tuples is |Bs| · α · D. In addition, the cloud needs
to look up the index structure, particularly a B-tree on the non-
sensitive relation and then retrieves all the desired tuples, resulting
in O(|

√
NS(r + log((1− α)D))) cost.

Lemma 3 (Computation cost at the cloud side—index struc-
ture) In QB technique, the computation cost at the cloud using
an indexable technique, namely B-tree is O(|SB | · r · log(αD) +
|NSB |(r+log((1−α)D))), where |SB | is the number of sensitive
values in a sensitive bin, and |NSB | is the number of non-sensitive
values in a sensitive bin.

Proof sketch. The cloud needs to look up an encrypted index for
each sensitive (|SB | · r) that results in O(|SB | · r · log(αD) cost
for traversal of the encrypted index. In addition, the cloud traverses
an index on the non-sensitive data to retrieve all the tuples having
|mathitNSB| values, results in |NSB |(r + log(1− α)D)) cost.
Here, the cost is dominated by an underlying cryptographic index-
able structure, which is also clear form §6.2.2.
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